• Journal of Inorganic Materials
  • Vol. 39, Issue 4, 383 (2024)
Zhaoyang WANG1, Peng QIN2, Yin JIANG1, Xiaobo FENG1..., Peizhi YANG1,* and Fuqiang HUANG3,*|Show fewer author(s)
Author Affiliations
  • 11. Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
  • 22. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 33. State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.15541/jim20230457 Cite this Article
    Zhaoyang WANG, Peng QIN, Yin JIANG, Xiaobo FENG, Peizhi YANG, Fuqiang HUANG. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383 Copy Citation Text show less
    References

    [1] Y ZHAO, Q YANG, X ZHOU et al. Antibiotic resistome in the livestock and aquaculture industries: status and solutions. Critical Reviews in Environmental Science and Technology, 51:, 2159(2021).

    [2] Y WU, P FENG, R LI et al. Progress in microbial remediation of antibiotic-residue contaminated environment. Chinese Journal of Biotechnology, 2133(2019).

    [3] Y W ZHOU, W B LI, V KUMAR et al. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: challenges and perspective. Environmental Research, 113075(2022).

    [4] R RAMAMURTHY, C H MEHTA, U Y NAYAK. Structurally nanoengineered antimicrobial peptide polymers: design, synthesis and biomedical applications. World Journal of Microbiology & Biotechnology, 139(2021).

    [5] J N RUSSELL, C K YOST. Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems. Chemosphere, 128177(2021).

    [6] J LAN, Y WANG, B HUANG et al. Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Advances, 4646(2021).

    [7] X Y WANG, J J JIANG, Y H MA et al. Tetracycline hydrochloride degradation over manganese cobaltate (MnCo2O4) modified ultrathin graphitic carbon nitride (g-C3N4) nanosheet through the highly efficient activation of peroxymonosulfate under visible light irradiation. Journal of Colloid and Interface Science, 449(2021).

    [8] Y CAO, X Y LEI, Q L CHEN et al. Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4. Journal of Photochemistry and Photobiology A-Chemistry, 794(2018).

    [9] W T ZHU, X C YU, J Q LIAO et al. Photocatalytic activity of tetracycline hydrochloride in mariculture wastewater degraded by CuO/Bi2O3 under visible light. Separation Science and Technology, 2930(2021).

    [10] M TANG, Y W XIA, D X YANG et al. Ag decoration and SnO2 coupling modified anatase/rutile mixed crystal TiO2 composite photocatalyst for enhancement of photocatalytic degradation towards tetracycline hydrochloride. Nanomaterials, 873(2022).

    [11] M SABRI, A HABIBI-YANGJEH, A KHATAEE. Nanoarchitecturing TiO2/NiCr2O4 p-n heterojunction photocatalysts for visible- light-induced activation of persulfate to remove tetracycline hydrochloride. Chemosphere, 134594(2022).

    [12] C C WANG, X WANG, W LIU. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of- the-art review. Chemical Engineering Journal, 123601(2020).

    [13] S Q WU, H Y HU, Y LIN et al. Visible light photocatalytic degradation of tetracyclineover TiO2. Chemical Engineering Journal, 122842(2020).

    [14] X YU, J L HUANG, J J ZHAO et al. Efficient visible light photocatalytic antibiotic elimination performance induced by nanostructured Ag/AgCl@Ti3+-TiO2 mesocrystals. Chemical Engineering Journal, 126359(2021).

    [15] T SAOTHAYANUN, T SIRINAKORRN, M OGAW. Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues. Frontiers in Energy, 631(2021).

    [16] S Y NONG, W J DONG, J W YIN et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. Journal of the American Chemical Society, 5719(2018).

    [17] Q ZHENG, L HUANG, Y ZHANG et al. Unexpected highly reversible topotactic CO2 sorption/desorption capacity for potassium dititanate. Journal of Materials Chemistry A, 12889(2016).

    [18] D WU, C LI, Q S KONG et al. Photocatalytic activity of Lu3+/TiO2 prepared by ball milling method. Journal of Rare Earths, 819(2018).

    [19] T NAKATO, Y IWATA, K KURODA et al. Preparation of an intercalation compound of layered titanic acid H2Ti4O9 with methylene-blue. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 249(1992).

    [20] Q Q DING, Y X ZHANG, G Z WANG et al. Enhanced photocatalytic activity of a hollow TiO2-Au-TiO2 sandwich structured nanocomposite. RSC Advances, 18958(2016).

    [21] D WU, H B WANG, H HUANG et al. Ambient electrochemical N2 reduction to NH3 under alkaline conditions enabled by a layered K2Ti4O9 nanobelt. Chemical Communications, 7546(2019).

    [22] M S RIAZ, X T YUAN, Y T ZHAO et al. Porous NiCo2S4/Co9S8 microcubes templated by sacrificial ZnO spheres as an efficient bifunctional oxygen electrocatalyst. Advanced Sustainable Systems, 1800167(2019).

    [23] V UVAROV, I POPOV. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Materials Characterization, 111(2013).

    [24] M T SIMS, L C ABBOTT, J W GOODBY. Shape segregation in molecular organisation: a combined X-ray scattering and molecular dynamics study of smectic liquid crystals. Soft Matter, 7722(2019).

    [25] N HAMZAH, N M NORDIN, A H A NADZRI. Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media. Applied Catalysis A-General, 133(2012).

    [26] X H LIN, K YANG, R R SI et al. Photo-assisted catalytic methanation of CO in H2-rich stream over Ru/TiO2. Applied Catalysis B-Environmental, 585(2014).

    [27] X L XU, L LIU, Y Y TONG et al. Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: unraveling the roles of surface oxygen vacancies and hydroxyl groups. ACS Catalysis, 5762(2021).

    [28] M SBOUI, H LACHHEB, M SWAMINATHAN et al. Low-temperature deposition and crystallization of RuO2/TiO2 on cotton fabric for efficient solar photocatalytic degradation of o-toluidine. Cellulose, 1189(2022).

    [29] C LI, H JANG, M G KIM et al. Ru-incorporated oxygen-vacancy- enriched MoO2 electrocatalysts for hydrogen evolution reaction. Applied Catalysis B: Environmental, 121204(2022).

    [30] Y N MA, Z P DENG, Z P LI et al. Adsorption characteristics and mechanism for K2Ti4O9 whiskers removal of Pb(II), Cd(II), and Cu(II) cations in wastewater. Journal of Environmental Chemical Engineering, 106236(2021).

    [31] J.W ZHANG, D WANG, S Q SHI et al. Synthesis and photocatalytic activity of Cu2O hollow nanospheres/TiO2 nanosheets by an in-situ water-bath method. Journal of Alloys and Compounds, 163252(2022).

    [32] B W HE, Z L WANG, P XIAO et al. Cooperative coupling of H2O2 production and organic synthesis over a floatable polystyrene-sphere-supported TiO2/Bi2O3 S-scheme photocatalyst. Advanced Materials, 2203225(2022).

    [33] Y JIANG, Z Y WANG, Q H ZHOU et al. Highly effective ruthenium-doped mesoporous Ti1-xRuxO2-y crystals for photocatalytic tetracycline degradation. Journal of Materials Chemistry C, 11027(2023).

    [34] D CAHEN, A KAHN. Electron energetics at surfaces and interfaces: concepts and experiments. Advanced Materials, 271(2003).

    [35] Q LI, H L WANG, M ZHANG et al. Suppressive strong metal- support interactions on ruthenium/TiO2 promote light-driven photothermal CO2 reduction with methane. Angewandte Chemie International Edition, e202300129(2023).

    [36] X P ZHOU, J C DONG, Y ZHAO et al. Synergy of photo- and photothermal-catalytic synthesis of methyl propionate from ethylene and carbon dioxide over B-TiO2/Ru. ACS Sustainable Chemistry & Engineering, 9255(2023).

    [37] H M LWIN, W Q ZHAN, S X SONG et al. Visible-light photocatalytic degradation pathway of tetracycline hydrochloride with cubic structured ZnO/SnO2heterojunction nanocatalyst. Chemical Physics Letters, 136806(2019).

    Zhaoyang WANG, Peng QIN, Yin JIANG, Xiaobo FENG, Peizhi YANG, Fuqiang HUANG. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383
    Download Citation