• Laser & Optoelectronics Progress
  • Vol. 61, Issue 21, 2125001 (2024)
Yuzeng Zhang1,2, Zhiyuan Gao1,2,*, and Jiangtao Xu1,2
Author Affiliations
  • 1School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 2Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP240601 Cite this Article Set citation alerts
    Yuzeng Zhang, Zhiyuan Gao, Jiangtao Xu. Design and Simulation of High Dynamic Range Pixel with Charge Distribution and LOFIC Technology[J]. Laser & Optoelectronics Progress, 2024, 61(21): 2125001 Copy Citation Text show less
    References

    [1] Zhang S A. Accelerated hyperspectral imaging via temporal compressive sensing[J]. Advanced Photonics, 5, 040502(2023).

    [2] Zhao T, Gao J, Xu J T et al. Optimized oversampling and readout circuit design for quanta image sensor[J]. Laser & Optoelectronics Progress, 58, 2403001(2021).

    [3] Jin W Q, Li L, Wang X. Research and application of thermal imaging mode and image processing technology[J]. Acta Optica Sinica, 43, 1510001(2023).

    [4] Du Y J, Gao J, Gao Z Y et al. Modeling and analysis of parasitic capacitance in 4-transistor pixels based on self-alignment technique[J]. Laser & Optoelectronics Progress, 60, 1926001(2023).

    [5] Li S M, Nie K M, Xu J T. Correlated multiple sampling technique for low-light CMOS image sensors[J]. Laser & Optoelectronics Progress, 60, 1228005(2023).

    [6] Wang X Y, Snoeij M F, Rao P R et al. A CMOS image sensor with a buried-channel source follower[C], 595(2008).

    [7] Chen Y, Xu Y, Chae Y et al. A 0.7 e-rms-temporal-readout-noise CMOS image sensor for low-light-level imaging[C], 384-386(2012).

    [8] Seo M W, Wang T X, Jun S W et al. 4.8 A 0.44 e-rms read-noise 32 fps 0.5 Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset[C], 80-81(2017).

    [9] Akahane N, Sugawa S, Adachi S et al. A sensitivity and linearity improvement of a 100 dB dynamic range CMOS image sensor using a lateral overflow integration capacitor[J]. IEEE Journal of Solid-State Circuits, 41, 851-858(2006).

    [10] Takase M, Isono S, Tomekawa Y et al. An over 120 dB wide-dynamic-range 3.0 μm pixel image sensor with in-pixel capacitor of 41.7 fF/μm2 and high reliability enabled by BEOL 3D capacitor process[C], 71-72(2018).

    [11] Fujihara Y, Murata M, Nakayama S et al. An over 120 dB single exposure wide dynamic range CMOS image sensor with two-stage lateral overflow integration capacitor[J]. IEEE Transactions on Electron Devices, 68, 152-157(2021).

    [12] Mizuno I, Tsutsui M, Nakamura M et al. A double transfer 8.0 μm pixel with high conversion gain and pixel binning[C], R52(2021).

    [13] Yang Y J, Xu J T, Ma B et al. A high dynamic range pixel using lateral overflow integration capacitor and adaptive feedback structure in CMOS image sensors[J]. Optoelectronics Letters, 19, 721-726(2023).

    [14] Venezia V C, Hsiung A C W, Ai Ket al. 1.5 μm dual conversion gain, backside illuminated image sensor using stacked pixel level connections with 13 ke- full-well capacitance and 0.8 e- noise[C], 4(2018).

    [15] Nie X, Wang Z J, Wang B C et al. Experiment and analysis of damage of CMOS image sensor induced by proton irradiation with different bias conditions[J]. Acta Optica Sinica, 43, 1928001(2023).

    [16] Takayanagi I, Miyauchi K, Okura S et al. A 120-ke- full-well capacity 160-µV/e- conversion gain 2.8-µm backside-illuminated pixel with a lateral overflow integration capacitor[J]. Sensors, 19, 5572(2019).

    Yuzeng Zhang, Zhiyuan Gao, Jiangtao Xu. Design and Simulation of High Dynamic Range Pixel with Charge Distribution and LOFIC Technology[J]. Laser & Optoelectronics Progress, 2024, 61(21): 2125001
    Download Citation