• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1210005 (2023)
Dejia Hu1,2, Yuan Huang1,2, Bin Yang1,2,*, and Xinguang He1,2
Author Affiliations
  • 1College of Geographic Sciences, Hunan Normal University, Changsha 410081, Hunan, China
  • 2Hunan Key Laboratory of Geospatial Big Data Mining and Application, Changsha 410081, Hunan, China
  • show less
    DOI: 10.3788/LOP220621 Cite this Article Set citation alerts
    Dejia Hu, Yuan Huang, Bin Yang, Xinguang He. Hyperspectral Image Classification Combining Superpixel Principal Component Analysis Dimensionality Reduction with Extended Random Walk Probability Optimization[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210005 Copy Citation Text show less
    Hyperspectral image classification framework based on SE_SVM
    Fig. 1. Hyperspectral image classification framework based on SE_SVM
    False-color image (bands 34, 17, 10) and ground truth label map of Indian Pines dataset
    Fig. 2. False-color image (bands 34, 17, 10) and ground truth label map of Indian Pines dataset
    False-color image (bands 68, 27, 19) and ground truth label map of Pavia University dataset
    Fig. 3. False-color image (bands 68, 27, 19) and ground truth label map of Pavia University dataset
    False-color image (bands 68, 27, 19) and ground truth label map of Salinas dataset
    Fig. 4. False-color image (bands 68, 27, 19) and ground truth label map of Salinas dataset
    Line graphs of overall classification accuracy of hyperspectral dataset with the number of principal components and the number of superpixels
    Fig. 5. Line graphs of overall classification accuracy of hyperspectral dataset with the number of principal components and the number of superpixels
    Classification result graphs of seven methods on Indian Pines dataset. (a) Ground truth label map; (b) SVM; (c) PCA_SVM; (d) SPCA_SVM; (e) ERW_SVM; (f) 3DCNN; (g) SSRN; (h) SE_SVM
    Fig. 6. Classification result graphs of seven methods on Indian Pines dataset. (a) Ground truth label map; (b) SVM; (c) PCA_SVM; (d) SPCA_SVM; (e) ERW_SVM; (f) 3DCNN; (g) SSRN; (h) SE_SVM
    Classification result graphs of seven methods on the Pavia University dataset. (a) Ground truth label map; (b) SVM; (c) PCA_SVM;(d) SPCA_SVM; (e) ERW_SVM; (f) 3DCNN; (g) SSRN; (h) SE_SVM
    Fig. 7. Classification result graphs of seven methods on the Pavia University dataset. (a) Ground truth label map; (b) SVM; (c) PCA_SVM;(d) SPCA_SVM; (e) ERW_SVM; (f) 3DCNN; (g) SSRN; (h) SE_SVM
    Classification result graphs of seven methods on the Salinas dataset. (a) Ground truth label map; (b) SVM; (c) PCA_SVM; (d) SPCA_SVM; (e) ERW_SVM; (f) 3DCNN; (g) SSRN; (h) SE_SVM
    Fig. 8. Classification result graphs of seven methods on the Salinas dataset. (a) Ground truth label map; (b) SVM; (c) PCA_SVM; (d) SPCA_SVM; (e) ERW_SVM; (f) 3DCNN; (g) SSRN; (h) SE_SVM
    LabelClassLabeled sampleTrainingValidationTest
    Total102495125119226
    1Alfalfa463241
    2Corn-notill142871711286
    3Corn-mintill8304343744
    4Corn2371212213
    5Grass-pasture4832424435
    6Grass-trees7303636658
    7Grass-pasture-mowed282125
    8Hay-windrowed4782424430
    9Oats201118
    10Soybean-notill9724848876
    11Soybean-mintill24551221222211
    12Soybean-clean5933030533
    13Wheat2051010185
    14Woods126563631139
    15Buildings-Grass-Trees-Drives3861919348
    16Stone-Steel-Towers934584
    Table 1. Data partitioning of Indian Pines dataset
    LabelClassLabeled sampleTrainingValidationTest
    Total4277642642641924
    1Asphalt663166666499
    2Meadows1864918618618277
    3Gravel209921212057
    4Trees306431313002
    5Painted metal sheets134513131319
    6Bare Soil502950504929
    7Bitumen133013131304
    8Self-Blocking Bricks368237373608
    9Shadows94799929
    Table 2. Data partitioning of Pavia University dataset
    LabelClassLabeled sampleTrainingValidationTest
    Total5412954254253045
    1Brocoli_green_weeds_1200920201969
    2Brocoli_green_weeds_2372637373652
    3Fallow197620201936
    4Fallow_rough_plow139414141366
    5Fallow_smooth267827272624
    6Stubble395940403879
    7Celery357936363507
    8Grapes_untrained1127111211211047
    9Soil_vinyard_develop620362626079
    10Corn_senesced_green_weeds327833333212
    11Lettuce_romaine_4wk106811111046
    12Lettuce_romaine_5wk192719191889
    13Lettuce_romaine_6wk91699898
    14Lettuce_romaine_7wk107011111048
    15Vinyard_untrained726873737122
    16Vinyard_vertical_trellis180718181771
    Table 3. Data partitioning of Salinas dataset
    LabelSVMPCA_SVMSPCA_SVMERW_SVM3DCNNSSRNSE_SVM
    10.0016.730.00100.0026.8336.59100.00
    261.9552.3993.2395.8481.1796.8197.56
    369.0362.0292.6798.4079.6598.1398.42
    457.7550.2491.8699.1367.1469.4894.51
    585.6875.7597.7898.5486.2197.7099.20
    683.6678.8699.6995.7697.2699.7098.72
    70.000.000.0099.5036.000.0098.80
    885.0790.09100.0099.2699.77100.00100.00
    90.000.000.00100.000.000.0098.00
    1074.0864.4094.4297.5791.3197.1498.57
    1167.9958.1091.3296.7284.4898.5198.05
    1259.8650.1487.2895.7066.4892.7096.81
    1391.8491.34100.0099.7498.38100.0099.79
    1489.8883.8999.3095.3198.42100.0098.94
    1559.7255.8098.5298.6472.6294.2499.83
    1698.2997.6197.6696.2125.0038.1098.90
    OA73.2865.9994.3896.8485.0095.9998.29
    AA61.5557.9677.7397.9069.4276.1998.51
    Kappa69.1260.2193.5796.4082.8995.4298.05
    Table 4. Classification accuracy achieved by seven different methods on Indian Pines dataset
    LabelSVMPCA_SVMSPCA_SVMERW_SVM3DCNNSSRNSE_SVM
    184.8080.7078.2694.6189.0099.4594.37
    291.8989.0896.4596.6597.7698.7397.34
    377.9773.9586.2199.8486.7888.2498.69
    494.1589.4696.8599.5489.4890.4198.57
    598.94100.0099.7499.4989.3899.9399.92
    685.3584.0495.8797.8078.8699.1997.43
    781.8466.8069.15100.0081.2095.0999.72
    876.2568.8480.8297.5782.3289.9598.47
    9100.0099.9999.0899.8094.4098.7299.73
    OA88.2184.8391.0897.0690.8696.9697.29
    AA87.9183.6589.1698.3787.6895.5298.25
    Kappa84.1979.5488.0796.0787.8296.0296.38
    Table 5. Classification accuracy achieved by seven different methods on Pavia University dataset
    LabelSVMPCA_SVMSPCA_SVMERW_SVM3DCNNSSRNSE_SVM
    199.5298.98100.00100.0097.1699.4499.99
    299.1098.53100.00100.00100.00100.00100.00
    393.5190.76100.0099.3099.48100.0099.86
    497.7698.6696.3096.0899.5699.9398.52
    598.0593.5697.7999.9995.0197.4899.97
    699.9599.82100.00100.0099.90100.0099.97
    798.3897.8399.9999.8597.3899.9199.95
    874.1572.7298.9897.3692.8085.7999.98
    998.6997.7599.0399.9899.87100.00100.00
    1085.1188.6095.3598.7094.4397.5498.42
    1191.7190.6692.8999.7491.9895.32100.00
    1295.7497.6793.40100.0098.73100.00100.00
    1396.4996.13100.0099.2498.5597.8899.39
    1497.0697.1597.0499.3298.2898.7695.00
    1573.6676.3999.9999.1270.6797.2999.87
    1698.3499.69100.00100.0091.8197.97100.00
    OA88.8588.5298.6599.0693.1196.1599.72
    AA93.5893.4398.1799.2995.3597.9599.43
    Kappa87.5587.1798.5098.9692.3195.7299.69
    Table 6. Classification accuracy achieved by seven different methods on Salinas dataset
    DatasetSVMPCA_SVMSPCA_SVMERW_SVMSE_SVM
    Indian Pines42.875.7410.3880.8215.49
    Pavia University15.1610.225.1235.4816.71
    Salinas40.6312.8326.6385.1819.58
    Table 7. Running time of five methods on the Indian Pines, Pavia University, and Salinas datasets
    Dejia Hu, Yuan Huang, Bin Yang, Xinguang He. Hyperspectral Image Classification Combining Superpixel Principal Component Analysis Dimensionality Reduction with Extended Random Walk Probability Optimization[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210005
    Download Citation