• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1210005 (2023)
Dejia Hu1,2, Yuan Huang1,2, Bin Yang1,2,*, and Xinguang He1,2
Author Affiliations
  • 1College of Geographic Sciences, Hunan Normal University, Changsha 410081, Hunan, China
  • 2Hunan Key Laboratory of Geospatial Big Data Mining and Application, Changsha 410081, Hunan, China
  • show less
    DOI: 10.3788/LOP220621 Cite this Article Set citation alerts
    Dejia Hu, Yuan Huang, Bin Yang, Xinguang He. Hyperspectral Image Classification Combining Superpixel Principal Component Analysis Dimensionality Reduction with Extended Random Walk Probability Optimization[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210005 Copy Citation Text show less
    References

    [1] Liu J M, Zheng C, Zhang L M et al. Hyperspectral image classification method based on image reconstruction feature fusion[J]. Chinese Journal of Lasers, 48, 0910001(2021).

    [2] Li D, Kong F Q, Zhu D Y. Hyperspectral image classification based on local Gaussian mixture feature extraction[J]. Acta Optica Sinica, 41, 0610001(2021).

    [3] Lee M A, Huang Y B, Yao H B et al. Determining the effects of storage on cotton and soybean leaf samples for hyperspectral analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2562-2570(2014).

    [4] Li Q L, Wang Y T, Liu H Y et al. Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology[J]. Computerized Medical Imaging and Graphics, 35, 179-185(2011).

    [5] Yuan Y, Wang Q, Zhu G K. Fast hyperspectral anomaly detection via high-order 2-D crossing filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 620-630(2015).

    [6] Zhang T T, Zeng S L, Gao Y et al. Using hyperspectral vegetation indices as a proxy to monitor soil salinity[J]. Ecological Indicators, 11, 1552-1562(2011).

    [7] Matthews M W, Bernard S, Evers-King H et al. Distinguishing cyanobacteria from algae in optically complex inland waters using a hyperspectral radiative transfer inversion algorithm[J]. Remote Sensing of Environment, 248, 111981(2020).

    [8] Hughes G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 14, 55-63(1968).

    [9] Kong Y P, Qin Y L. Hyperspectral image classification algorithm based on deep learning[J]. Transducer and Microsystem Technologies, 39, 138-141(2020).

    [10] Blanzieri E, Melgani F. Nearest neighbor classification of remote sensing images with the maximal margin principle[J]. IEEE Transactions on Geoscience and Remote Sensing, 46, 1804-1811(2008).

    [11] Li W, Chen C, Su H J et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 3681-3693(2015).

    [12] Ham J, Chen Y C, Crawford M M et al. Investigation of the random forest framework for classification of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 43, 492-501(2005).

    [13] Melgani F, Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 42, 1778-1790(2004).

    [14] Chen Y S, Zhao X, Jia X P. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 2381-2392(2015).

    [15] Chen Y S, Lin Z H, Zhao X et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2094-2107(2014).

    [16] Yan J W, Chen H D, Liu L. Overview of hyperspectral image classification[J]. Optics and Precision Engineering, 27, 680-693(2019).

    [17] Li F Y, Huo H T, Li J et al. Hyperspectral image classification via multiple-feature-based improved sparse representation[J]. Acta Optica Sinica, 39, 0528004(2019).

    [18] Qi Y F, Chen J, Huo Y L. A hyperspectral image classification algorithm combining Gabor filtering and 3D/2D convolution[J]. Journal of Optoelectronics·Laser, 32, 477-484(2021).

    [19] Jiang J J, Ma J Y, Chen C et al. SuperPCA: a superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 4581-4593(2018).

    [20] Tarabalka Y, Fauvel M, Chanussot J et al. SVM- and MRF-based method for accurate classification of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 7, 736-740(2010).

    [21] Kang X D, Li S T, Fang L Y et al. Extended random walker-based classification of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 144-153(2015).

    [22] Hu W, Huang Y Y, Wei L et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 258619(2015).

    [23] Li Y, Zhang H K, Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 9, 67(2017).

    [24] Zhong Z L, Li J, Luo Z M et al. Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 847-858(2018).

    [25] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [26] Liu M Y, Tuzel O, Ramalingam S et al. Entropy rate superpixel segmentation[C], 2097-2104(2011).

    [27] Saranathan A M, Parente M. Uniformity-based superpixel segmentation of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 1419-1430(2016).

    [28] Shi J B, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 888-905(2000).

    [29] Chen S X, Zhang X. Joint sparse representation of hyperspectral image classification based on quadratic space processing[J]. Journal of Signal Processing, 37, 2134-2147(2021).

    [30] Zhang L. Study on the hyperspectral remote sensed image classify based on PCA and SVM[J]. Optical Technique, 34, 184-187(2008).

    Dejia Hu, Yuan Huang, Bin Yang, Xinguang He. Hyperspectral Image Classification Combining Superpixel Principal Component Analysis Dimensionality Reduction with Extended Random Walk Probability Optimization[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210005
    Download Citation