[1] Liu J M, Zheng C, Zhang L M et al. Hyperspectral image classification method based on image reconstruction feature fusion[J]. Chinese Journal of Lasers, 48, 0910001(2021).
[2] Li D, Kong F Q, Zhu D Y. Hyperspectral image classification based on local Gaussian mixture feature extraction[J]. Acta Optica Sinica, 41, 0610001(2021).
[3] Lee M A, Huang Y B, Yao H B et al. Determining the effects of storage on cotton and soybean leaf samples for hyperspectral analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2562-2570(2014).
[4] Li Q L, Wang Y T, Liu H Y et al. Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology[J]. Computerized Medical Imaging and Graphics, 35, 179-185(2011).
[5] Yuan Y, Wang Q, Zhu G K. Fast hyperspectral anomaly detection via high-order 2-D crossing filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 620-630(2015).
[6] Zhang T T, Zeng S L, Gao Y et al. Using hyperspectral vegetation indices as a proxy to monitor soil salinity[J]. Ecological Indicators, 11, 1552-1562(2011).
[7] Matthews M W, Bernard S, Evers-King H et al. Distinguishing cyanobacteria from algae in optically complex inland waters using a hyperspectral radiative transfer inversion algorithm[J]. Remote Sensing of Environment, 248, 111981(2020).
[8] Hughes G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 14, 55-63(1968).
[9] Kong Y P, Qin Y L. Hyperspectral image classification algorithm based on deep learning[J]. Transducer and Microsystem Technologies, 39, 138-141(2020).
[10] Blanzieri E, Melgani F. Nearest neighbor classification of remote sensing images with the maximal margin principle[J]. IEEE Transactions on Geoscience and Remote Sensing, 46, 1804-1811(2008).
[11] Li W, Chen C, Su H J et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 3681-3693(2015).
[12] Ham J, Chen Y C, Crawford M M et al. Investigation of the random forest framework for classification of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 43, 492-501(2005).
[13] Melgani F, Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 42, 1778-1790(2004).
[14] Chen Y S, Zhao X, Jia X P. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 2381-2392(2015).
[15] Chen Y S, Lin Z H, Zhao X et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2094-2107(2014).
[16] Yan J W, Chen H D, Liu L. Overview of hyperspectral image classification[J]. Optics and Precision Engineering, 27, 680-693(2019).
[17] Li F Y, Huo H T, Li J et al. Hyperspectral image classification via multiple-feature-based improved sparse representation[J]. Acta Optica Sinica, 39, 0528004(2019).
[18] Qi Y F, Chen J, Huo Y L. A hyperspectral image classification algorithm combining Gabor filtering and 3D/2D convolution[J]. Journal of Optoelectronics·Laser, 32, 477-484(2021).
[19] Jiang J J, Ma J Y, Chen C et al. SuperPCA: a superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 4581-4593(2018).
[20] Tarabalka Y, Fauvel M, Chanussot J et al. SVM- and MRF-based method for accurate classification of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 7, 736-740(2010).
[21] Kang X D, Li S T, Fang L Y et al. Extended random walker-based classification of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 144-153(2015).
[22] Hu W, Huang Y Y, Wei L et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 258619(2015).
[23] Li Y, Zhang H K, Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 9, 67(2017).
[24] Zhong Z L, Li J, Luo Z M et al. Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 847-858(2018).
[25] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[26] Liu M Y, Tuzel O, Ramalingam S et al. Entropy rate superpixel segmentation[C], 2097-2104(2011).
[27] Saranathan A M, Parente M. Uniformity-based superpixel segmentation of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 1419-1430(2016).
[28] Shi J B, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 888-905(2000).
[29] Chen S X, Zhang X. Joint sparse representation of hyperspectral image classification based on quadratic space processing[J]. Journal of Signal Processing, 37, 2134-2147(2021).
[30] Zhang L. Study on the hyperspectral remote sensed image classify based on PCA and SVM[J]. Optical Technique, 34, 184-187(2008).