• Laser & Optoelectronics Progress
  • Vol. 60, Issue 17, 1714001 (2023)
Dewei Deng1,3,*, Hao Jiang1, Zhenhua Li1, Xueguan Song2..., Qi Sun3 and Yong Zhang3|Show fewer author(s)
Author Affiliations
  • 1Research Center of Laser 3D Printing Equipment and Application Engineering Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning , China
  • 2School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning , China
  • 3Shenyang Blower Group Corporation, Shenyang 110869, Liaoning , China
  • show less
    DOI: 10.3788/LOP221821 Cite this Article Set citation alerts
    Dewei Deng, Hao Jiang, Zhenhua Li, Xueguan Song, Qi Sun, Yong Zhang. Multi-Objective Optimization of Laser Cladding Parameters Based on BP Neural Network[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1714001 Copy Citation Text show less
    Morphology of cladding powder
    Fig. 1. Morphology of cladding powder
    Schematic diagram of laser cladding system
    Fig. 2. Schematic diagram of laser cladding system
    Schematic diagram of laser cladding coating
    Fig. 3. Schematic diagram of laser cladding coating
    Pareto and main effects plots of dilution rates. (a) Pareto chart; (b) main effects chart
    Fig. 4. Pareto and main effects plots of dilution rates. (a) Pareto chart; (b) main effects chart
    Residual and main effects plots of micro hardness. (a) Pareto diagram; (b) main effect diagram
    Fig. 5. Residual and main effects plots of micro hardness. (a) Pareto diagram; (b) main effect diagram
    Pareto and main effects plots of height. (a) Pareto chart; (b) main effects chart
    Fig. 6. Pareto and main effects plots of height. (a) Pareto chart; (b) main effects chart
    Pareto and main effects plots of width. (a) Pareto chart; (b) main effects chart
    Fig. 7. Pareto and main effects plots of width. (a) Pareto chart; (b) main effects chart
    Schematic diagram of BP neural network
    Fig. 8. Schematic diagram of BP neural network
    GA-BP neural network flow chart
    Fig. 9. GA-BP neural network flow chart
    Comparison curves of response volume test and predicted values with coefficient of determination R2.(a) Height; (b) width; (c) dilution rate; (d) hardness
    Fig. 10. Comparison curves of response volume test and predicted values with coefficient of determination R2.(a) Height; (b) width; (c) dilution rate; (d) hardness
    Plot of predicted and expected value fit of response volume.(a) Width; (b) height; (c) dilution rate; (d) hardness
    Fig. 11. Plot of predicted and expected value fit of response volume.(a) Width; (b) height; (c) dilution rate; (d) hardness
    Relationship between the refined process parameters and gray correlation degree
    Fig. 12. Relationship between the refined process parameters and gray correlation degree
    Relative error of validation sample performance data for neural networks
    Fig. 13. Relative error of validation sample performance data for neural networks
    MaterialMass fraction /%
    CMnPSSiCrNiFeMo
    304 stainless steel≤0.08≤2.00≤0.045≤0.030≤1.0018.0-20.08.0-11.0Bal.
    Ferro 550.351.10.37Bal.2
    Table 1. Chemical composition of the substrate and Ferro 55 alloy powder
    Process parameterNotationLevel
    Laser power /WLP10001200140016001800
    Scanning speed /(mm·s-1SS45678
    Flow rate of protective gas /(L·min-1FG678910
    Table 2. Full factor experiment level table
    No.LP /WSS /(mm·s-1FG /(L·min-1W /μmH /μmη /%DH /HV
    11000463775.8111085.78118.394893.50
    21000473839.0201230.67019.766640.44
    31000483653.0071149.45124.586816.16
    41000493749.7401101.47026.765631.60
    510004103843.952963.087733.214643.54
    61000563620.0631200.11317.523878.22
    71000573589.9321429.4456.577951.22
    81000583632.8411128.76617.657847.00
    91000593633.1351113.51920.976822.62
    1010005103395.6801021.66023.473832.60
    111000663378.0671241.91711.610848.58
    121000673380.2891159.29013.168833.76
    131000683549.4651399.0603.687954.66
    141000693596.0151002.32420.108749.00
    1510006103431.845986.543423.052665.12
    1161800763983.0891296.85528.123705.48
    1171800773904.3841268.99728.857667.70
    1181800783624.6231208.51434.520566.60
    1191800784292.7231396.21619.470821.52
    12018007103374.230746.50046.727480.96
    1211800863842.0541322.70824.122814.26
    1221800873834.4201294.36021.603762.53
    1231800883917.3581266.67526.265733.98
    1241800893280.5121314.89724.122575.80
    12518008103953.457984.488431.864595.90
    Table 3. Morphological data and hardness data of some samples
    SourcedfAdjusted SSDAdjusted MSF valueP value
    S=4.17128 R2=87.21% Adjusted R2=86.21% Predicted R2=84.98%
    Model913640.01515.5687.100.000
    LP1451.4451.3725.940.000
    SS160.660.613.480.065
    FG147.647.592.740.101
    LP×LP1429.8429.8024.700.000
    SS×SS147.547.502.730.101
    FG×FG1126.3126.297.260.008
    LP×SS14.74.670.270.605
    LP×FG123.823.831.370.244
    SS×FG164.064.013.680.058
    Residual1152001.017.40
    Lack of fit1141887.716.560.150.990
    Pure error1113.3113.25
    Cor total12415641.0
    Table 4. Analysis of variance results for dilution rates
    SourcedfAdjusted SSDAdjusted MSF valueP value
    S=94.5079 R2=63.26% Adjusted R2=60.38% Predicted R2=57.00%
    Model9176821319646822.000.000
    LP164966649667.270.008
    SS135281352813.950.049
    FG1000.000.998
    LP×LP163104631047.070.009
    SS×SS132684326843.660.058
    FG×FG11531530.020.896
    LP×SS17687680.090.770
    LP×FG1692969290.780.380
    SS×FG140400.000.947
    Residual11510271518932
    Lack of fit11499465987250.270.944
    Pure error13249232492
    Cor total1242795364
    Table 5. Analysis of variance results for micro hardness
    SourcedfAdjusted SSDAdjusted MSF valueP value
    S=99.1298 R2=49.66% Adjusted R2=45.72% Predicted R2=39.58%
    Model9111472012385812.600.000
    LP112319123191.250.265
    SS1319631960.330.570
    FG195049950499.670.002
    LP×LP1842184210.860.357
    SS×SS16126120.060.803
    FG×FG113753213753214.000.000
    LP×SS12732730.030.868
    LP×FG110017100171.020.315
    SS×FG131310.000.955
    Residual11511300729827
    Lack of fit114111245697580.550.818
    Pure error11761617616
    Cor total1242244792
    Table 6. Analysis of variance results for height
    SourcedfAdjusted SSDAdjusted MSF valueP value
    S=171.605 R2=78.09% Adjusted R2=76.38% Predicted R2=74.06%
    Model912073380134148745.550.000
    LP12189542189547.440.007
    SS11231781231784.180.043
    FG119186191860.650.421
    LP×LP133293332931.130.290
    SS×SS11541540.010.943
    FG×FG1692669260.240.629
    LP×SS128494284940.970.327
    LP×FG12000912000916.790.010
    SS×FG143861438611.490.225
    Residual115338656829448
    Lack of fit1143163389277490.120.995
    Pure error1223179223179
    Cor total12415459948
    Table 7. Analysis of variance results for width
    No.LP /WSS /(mm·s-1FG /(L·min-1GRC
    11000460.5455
    21000470.4814
    31000480.5468
    41000490.5495
    510004100.5891
    61000560.5075
    71000570.4698
    81000580.5105
    91000590.5254
    1010005100.5506
    111000660.4564
    121000670.4691
    131000680.4647
    141000690.5239
    1510006100.5242
    2510008100.3947
    1061800460.6250
    1161800760.5705
    1171800770.5704
    1181800780.5028
    1191800780.5482
    12018007100.5502
    1211800860.5344
    1221800870.5060
    1231800880.5505
    1241800890.4607
    12518008100.6033
    Table 8. Gray correlation degree of some samples
    Process parameterParameter rangeUpward gradientNumber of levels
    LP /W1000-18001081
    SS /(mm·s-14-80.141
    FG /(L·min-16-100.59
    Table 9. Parameter level design
    Sample numberLP /WSS /(mm·s-1FG /(L·min-1
    T113705.07.5
    T214106.58.0
    T310606.26.0
    T417007.59.0
    T515004.07.0
    H110904.410.0
    H210904.410.0
    H310904.410.0
    Table 10. Sample parameters for validation
    SampleW /μmH /μmη /%DH /HV
    T13882.11287.524.069715.30
    T13993.51234.330.000602.05
    T23885.31301.921.143754.24
    T23723.91198.025.800707.74
    T33405.71299.412.671772.44
    T33504.11277.912.732905.74
    T43907.81259.227.893660.16
    T43771.51200.032.221610.27
    T54129.71191.832.907529.98
    T54225.31209.138.730535.17
    Table 11. Test and predicted values of the validated samples by neural networks
    SampleW /μmH /μmη /%DH /HVGRC
    H13715.31112.532.564518.720.5448
    H23459.6925.141.638530.900.5668
    H33666.21030.935.639525.470.5403
    H’3714.2967.429.972611.420.6797
    Table 12. Test and predicted values of the validated samples by neural networks
    Dewei Deng, Hao Jiang, Zhenhua Li, Xueguan Song, Qi Sun, Yong Zhang. Multi-Objective Optimization of Laser Cladding Parameters Based on BP Neural Network[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1714001
    Download Citation