[1] 科技部. “十三五”先进制造技术领域科技创新专项规划[EB/OL]. (2017-05-02)[2021-09-29]. http://www.gov.cn/xinwen/2017-05/02/content_5190479.htm. doi: 10.3969/j.issn.1672-3732.2016.03.008Ministry of Science and Technology. The 13th Five-Year Plan for Scientific and Technological Innovation Advanced Manufacturing Technology [EB/OL]. http://www.gov.cn/xinwen/2017-05/02/content_5190479.htm.(in Chinese). doi: 10.3969/j.issn.1672-3732.2016.03.008
[2] 国务院. 计量发展规划(2021-2035年)[EB/OL]. (2021-12-31)[2022-06-10]. http://www.gov.cn/zhengce/content/2022-01/28/content_5670947.html.CouncilState. Quantitative Development Planning (2021-2035)[EB/OL]. (2021-12-31)[2022-06-10]. http://www.gov.cn/zhengce/content/2022-01/28/content_5670947.html.(in Chinese)
[3] 全国齿轮标准化技术委员会. 圆柱齿轮 ISO齿面公差分级制 第1部分:齿面偏差的定义和允许值GB/T 10095.1-2022[S]. 北京: 中国标准出版社, 2022.National Gear Standardization Technical Committee. Cylindrical gears-ISO system of flank tolerance classification-Part1:Definitions and allowable values of deviations relevant to flanks of gear teeth-2022GB/T 10095.1[S]. Beijing: Standards Press of China, 2022. (in Chinese)
[4] ISO. ISO(2013).
[5] ISO. ISO(2003).
[6] (2005).
[7] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 齿轮渐开线样板: GB/T 6467—2010[S]. 北京: 中国标准出版社, 2011. doi: 10.3969/j.issn.1002-7203.2014.04.003General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. The involute artifact of gear: 6467-2010GB/T [S]. Beijing: Standards Press of China, 2011. (in Chinese). doi: 10.3969/j.issn.1002-7203.2014.04.003
[8] 中华人民共和国国家市场监督管理总局,中国计量科学研究院,德国联邦物理技术研究院. 中德计量合作40年纪念文集[M]. 北京: 中国标准出版社, 2019: 87.State Administration of Market Supervision and Administration of the People's Republic of China, National Institute of Metrology, China, BundesanstaltPhysikalisch-Technische. Collection of Commemorative Papers on the 40th Anniversary of Sino German Metrology Cooperation[M]. Beijing: Standards Press of China, 2019: 87. (in Chinese)
[9] 唐启昌. 自力更生建立渐开线国家标准[J]. 中国计量, 2008(9): 51-52. doi: 10.3969/j.issn.1006-9364.2008.09.029TANGQ CH. Self-reliant establishment of national standards for involute [J]. China Metrology, 2008(9): 51-52.(in Chinese). doi: 10.3969/j.issn.1006-9364.2008.09.029
[10] 唐启昌. 用渐开线样板作为渐开线仪器的标准[J]. 计量工作, 1977(1): 5-8.TANGQ CH. The involute artifact is used as the standard for involute instruments[J]. Metrology Science and Technology, 1977(1): 5-8. (in Chinese)
[11] 张泰昌. 渐开线样板的检定和使用[J]. 计量技术. 1986(12): 27-29.ZHANGT CH. Verification and use of involute artifact[J]. Metrology Science and Technology. 1986(12): 27-29. (in Chinese)
[12] 唐启昌. 长度计量检定测试技术讲座(五): 关于齿轮渐开线仪器的正确使用和量值统一(上)[J]. 中国计量, 1997(5):57-59. doi: 10.3901/jme.2012.05.124TANGQ CH. Technical lecture on length measurement verification test (V)-on the correct use of gear involute instrument and the unification of quantity value (I)[J]. China Metrology, 1997(5): 57-59. (in Chinese). doi: 10.3901/jme.2012.05.124
[13] 佟晓冬, 王立鼎, 王岩, 等. 渐开线实体基准的研制[J]. 计量技术, 1998(5): 33-36.TONGX D, WANGL D, WANGY, et al. Development of solid reference for involute [J]. Measurement Technique, 1998(5): 33-36.(in Chinese)
[14] 王立鼎,卢占山. 模数2基准标准齿轮的研制[J]. 光学机械, 1982(4): 28-34.WANGL D, LUZH SH. Development of modular 2 reference standard gear[J]. Optics and Precision Engineering,1982(4): 28-34. (in Chinese)
[15] 华恒. 机械工程专家学术成就介绍(46) 精密机械专家王立鼎[J]. 中国机械工程, 1998(6): 82.HUAH. Introduction to academic achievements of mechanical engineering experts (46) Wang Liding, an expert in precision machinery[J]. China Mechanical Engineering, 1998(6): 82. (in Chinese)
[16] 国家计量科学数据中心. 全国社会公用计量标准[EB/OL]. (2021-09-30)[2021-09-30]. https://msd.nmdc.ac.cn/openstd/web/index.php?r=openstd%2Flist&keyword=%E6%B8%90%E5%BC%80%E7%BA%BF.National Metrological Science Data Center. National Social Public Measurement Standards [EB/OL]. (2021-09-30)[2021-09-30]. https://msd.nmdc.ac.cn/openstd/web/index.php?r=openstd%2Flist&keyword=%E6%B8%90%E5%BC%80%E7%BA%BF.(in Chinese)
[17] 国家质量监督检验检疫总局. 齿轮测量中心校准规范: JJF 1561—2016[S]. 北京: 中国质检出版社, 2016. doi: 10.3969/j.issn.1002-7203.2014.04.003General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Calibration specification for gear measuring centers: 1561—2016JJF [S]. Beijing: Standards Pross of China, 2016. (in Chinese). doi: 10.3969/j.issn.1002-7203.2014.04.003
[18] R C FRAZER, R BICKER et al. An international comparison of involute gear profile and helix measurement. Metrologia, 41, 12-16(2004).
[19] K KNIEL, N CHANTHAWONG, N EASTMAN et al. Supplementary comparison EURAMET.L-S24 on involute gear standards. Metrologia, 51(2014).
[20] D METZ, N FERREIRA, J CHAILLOT et al. Integration of a piezoresistive microprobe into a commercial gear measuring instrument. Precision Engineering, 55, 349-360(2019).
[21] F TAKEOKA, M KOMORI, A KUBO et al. Design of laser interferometric measuring device of involute profile. Journal of Mechanical Design, 130, 1(2008).
[22] F TAKEOKA, M KOMORI, A KUBO et al. High-precision measurement of an involute artefact by a rolling method and comparison between measuring instruments. Measurement Science and Technology, 20(2009).
[23] T TAGUCHI, A G MING, M SHIMOJO. Development of high precision gear measuring machine. International Journal of Mechatronics and Automation, 1, 181(2011).
[24] 国家质量监督检验检疫总局. 齿轮渐开线样板检定规程: JJG 332—2003[S]. 北京: 中国计量出版社, 2004. doi: 10.3969/j.issn.1002-7203.2014.04.003General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Verification regulation of gear involute Masters: 332—2003JJG [S]. Beijing: China Metrology Publishing House, 2004. (in Chinese). doi: 10.3969/j.issn.1002-7203.2014.04.003
[25] V MAKAREVICH. Final report on supplementary comparison COOMET.L-S10: Comparison of length standards for measuring gear parameters. Metrologia, 49(2012).
[26] K KNIEL, A WEDMANN, M STEIN et al. COOMET supplementary comparison L-S18 (project: 673/UA-a/15). Metrologia, 55(2018).
[27] S JANTZEN, M NEUGEBAUER, R MEEß et al. Novel measurement standard for internal involute microgears with modules down to 0.1 mm. Measurement Science and Technology, 29, 125012(2018).
[28] 国家质量监督检验检疫总局. 齿轮渐开线测量仪器校准规范: JJF 1124—2004[S]. 北京: 中国计量出版社, 2004.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Calibration specification for Gear involute Measuring instruments: 1124—2004JJF [S]. Beijing: China Metrology Publishing House, 2004. (in Chinese)
[29] 凌明, 凌四营, 刘祥生, 等. 虑及计值范围的1级齿轮渐开线样板精密成型[J]. 仪器仪表学报, 2021, 42(11): 35-44.LINGM, LINGS Y, LIUX SH, et al. Precision forming for class-1 gear involute artefact considering the evaluation range[J]. Chinese Journal of Scientific Instrument, 2021, 42(11): 35-44.(in Chinese)
[30] 凌四营, 凌明, 石照耀, 等. 1级齿轮渐开线样板的国内量值比对[J]. 光学 精密工程, 2022, 30(22): 2869-2875. doi: 10.37188/ope.20223000.0392LINGS Y, LINGM, SHIZH Y, et al. Measurement comparison for class-1 gear involute artifact in China[J]. Opt. Precision Eng., 2022, 30(22): 2869-2875.(in Chinese). doi: 10.37188/ope.20223000.0392
[31] V ZELENÝ, I LINKEOVÁ, J SÝKORA et al. Mathematical approach to evaluate involute gear profile and helix deviations without using special gear software. Mechanism and Machine Theory, 135, 150-164(2019).
[32] 凌四营. 超精密磨齿中的机床精化及磨齿工艺研究[D]. 大连: 大连理工大学, 2011.LINGS Y. Research on Machine Refinement and Processing for Ultra-precision Gear-grinding[D]. Dalian: Dalian University of Technology, 2011. (in Chinese)
[33] 凌四营, 王立鼎, 李克洪, 等. 基于1级精度基准标准齿轮的超精密磨齿工艺[J]. 光学 精密工程, 2011, 19(7):1596-1604. doi: 10.3788/OPE.20111907.1596LINGS Y, WANGL D, LIK H, et al. Ultra-precision gear-grinding processing based on class 1 master gear[J]. Opt. Precision Eng., 2011, 19(7):1596-1604.(in Chinese). doi: 10.3788/OPE.20111907.1596
[34] Q WANG, Y PENG, A WIEMANN et al. Improved gear metrology based on the calibration and compensation of rotary table error motions. CIRP Annals, 68, 511-514(2019).
[35] A K WIEMANN, M STEIN, K KNIEL. Traceable metrology for large involute gears. Precision Engineering, 55, 330-338(2019).
[36] K NI, Y PENG, D STÖBENER et al. Cylindrical Gear Metrology. Precision Manufacturing, 1-29(2019).
[37] T TAGUCHI, Y KONDO. Evaluation of a high-precision gear measuring machine for helix measurement using helix and wedge artifacts. Measurement Science and Technology, 27(2016).
[38] Y KONDO, K KONDO, S OSAWA et al. Evaluation of instruments for helix measurement using wedge artifact. Precision Engineering, 34, 667-674(2010).
[39] M KOMORI, F TAKEOKA, K KONDO et al. Design method of double ball artifact for use in evaluating the accuracy of a gear-measuring instrument. Journal of Mechanical Design, 132, 1(2010).
[40] M KOMORI, F TAKEOKA, Y KONDO et al. High-precision concave spherical artifact for accuracy evaluation of a measuring instrument for an internal gear. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 10(2016).
[41] Y KONDO, K SASAJIMA, S NOGUCHI et al. Tooth form evaluation using ball artifact development of a measuring instrument of a ball center distance traceable to national standard of length. Key Engineering Materials, 381/382, 595-598(2008).
[42] 石照耀, 张健, 陈洪芳. 双球渐开线样板的理论分析和应用[J]. 光学 精密工程, 2011, 19(12): 2963-2969. doi: 10.3788/ope.20111912.2963SHIZH Y, ZHANGJ, CHENH F. Theoretical analysis of double-ball artifact and its applications[J]. Opt. Precision Eng., 2011, 19(12): 2963-2969.(in Chinese). doi: 10.3788/ope.20111912.2963
[43] 陈洪芳, 张健. 齿轮双球样板的设计方法[J]. 哈尔滨工程大学学报, 2012, 33(3): 361-365. doi: 10.3969/j.issn.1006-7043.201101056CHENH F, ZHANGJ. Design method of a double-ball artifact of gears[J]. Journal of Harbin Engineering University, 2012, 33(3): 361-365.(in Chinese). doi: 10.3969/j.issn.1006-7043.201101056
[44] 陈洪芳, 梁超伟, 李宝山, 等. 新型双轴式圆弧型大尺寸渐开线样板的工作原理[J]. 北京航空航天大学学报, 2022, 48(1): 1-7.CHENH F, LIANGCH W, LIB SH, et al. Working principle of novel double-axis arc-shaped large-size involute artifact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 1-7.(in Chinese)
[45] H CHEN, C LIANG, Z SHI et al. New design method for large involute artifacts. Precision Engineering, 76, 190-198(2022).
[46] G LANZA, B VIERING. A novel standard for the experimental estimation of the uncertainty of measurement for micro gear measurements. CIRP Annals, 60, 543-546(2011).
[47] D B WESS. Development of a novel lead master consisting of an offset sphere. Precision Engineering, 22, 206-219(1998).
[48] K KNIEL, M FRANKE, F HÄRTIG et al. Detecting 6 DoF geometrical errors of rotary tables. Measurement, 153, 107366(2020).
[49] A GUENTHER, D STÖBENER, G GOCH. Self-calibration method for a ball plate artefact on a CMM. CIRP Annals, 65, 503-506(2016).
[50] M KOMORI, F TAKEOKA, T KITEN et al. Calibration method for magnetically self-aligned multiball pitch artifact and accuracy upon reassembly. Precision Engineering, 43, 187-199(2016).
[51] M KOMORI, F TAKEOKA, T KITEN et al. Magnetically self-aligned multiball pitch artifact using geometrically simple features. Precision Engineering, 40, 160-171(2015).
[52] Y KONDO, S OSAWA, O SATO et al. Evaluation of instruments for pitch measurement using a sphere artifact. Precision Engineering, 36, 604-611(2012).
[53] Q C WANG, J MILLER, A VON FREYBERG et al. Error mapping of rotary tables in 4-axis measuring devices using a ball plate artifact. CIRP Annals, 67, 559-562(2018).
[54] A GUENTHER, K KNIEL, F HÄRTIG et al. Introduction of a new bevel gear measurement standard. CIRP Annals, 62, 515-518(2013).
[55] 孔玉梅. 基准级渐开线激光测量仪的精度提升方法研究[D]. 大连: 大连理工大学, 2022.KONGY M. Research on Precision Improvement Method of Reference Involute Laser Measuring Instrument[D]. Dalian: Dalian University of Technology, 2022. (in Chinese)
[56] 娄志峰. 基准级渐开线测试理论与技术研究[D]. 大连: 大连理工大学, 2008.LOUZH F. Research on Theory and Technology of Benchmark Involute Test[D]. Dalian: Dalian University of Technology, 2008. (in Chinese)
[57] O RUDOLF. History of gear measuring machines and traceability 1900-2006. Gear Product News, 10, 20-25(2006).
[58] S Y LING, Z F LOU, L D WANG et al. Optimal forming principle and grinding experiment of the ultra-precision involute profile. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227, 375-382(2013).
[59] 高延新,张晓琳,李慧鹏. 齿轮精度与检测技术手册[M]. 北京: 机械工业出版社, 2014.GAOY X, ZHANGX L, LIH P. Technical Manual for Gear Accuracy and Inspection[M]. Beijing: China Machine Press, 2014. (in Chinese)
[60] 李小燕, 凌四营, 凌明, 等. 高精度齿轮螺旋线样板的测量方法与仪器[J]. 光学 精密工程, 2022, 30(17): 2100-2118. doi: 10.37188/ope.20223000.0051LIX Y, LINGS Y, LINGM, et al. Measuring methods and instruments of high precision gear helix artifact[J]. Optics and Precision Engineering, 2022, 30(17): 2100-2118.(in Chinese). doi: 10.37188/ope.20223000.0051
[61] 彭东林, 付敏, 陈锡侯, 等. 典型位移传感器分类研究与时栅传感器特点分析[J]. 机械工程学报, 2018, 54(10): 36-42. doi: 10.3901/jme.2018.10.036PENGD L, FUM, CHENX H, et al. Classification study on typical displacement sensors and analysis on the characteristics of time grating sensors[J]. Journal of Mechanical Engineering, 2018, 54(10): 36-42.(in Chinese). doi: 10.3901/jme.2018.10.036
[62] 李尕丽, 薛梓, 黄垚, 等. 全圆连续角度标准装置的系统误差分离与补偿[J]. 仪器仪表学报, 2021, 42(3): 1-9.LIG L, XUEZ, HUANGY, et al. System error separation and compensation of the continuous full circle angle standard device[J]. Chinese Journal of Scientific Instrument, 2021, 42(3): 1-9.(in Chinese)
[63] Y HUANG, Z XUE, M HUANG et al. The NIM continuous full circle angle standard. Measurement Science and Technology, 29(2018).
[64] H LIN, Z XUE, G L YANG et al. Development of a high accurate gear measuring machine based on laser interferometry(2015).
[65] 林虎, 黄垚, 杨国梁, 等. 新一代齿轮螺旋线基准装置的研制[J]. 计量科学与技术, 2022(4): 67-73.LINH, HUANGY, YANGG L, et al. Development of the new generation national primary standard for gear helix calibration[J]. Metrology Science and Technology, 2022(4): 67-73.(in Chinese)
[68] F HÄRTIG, M STEIN. 3D involute gear evaluation - Part I: Workpiece coordinates. Measurement, 134, 569-573(2019).
[69] M STEIN, F HÄRTIG. 3D involute gear evaluation - part II: deviations - basic algorithms for modern software validation. Measurement Science and Technology, 33, 125003(2022).
[70] K WENDT, M FRANKE, F HÄRTIG. Measuring large 3D structures using four portable tracking laser interferometers. Measurement, 45, 2339-2345(2012).
[71] F HÄRTIG, K CHRISTIAN, K KARIN et al. Improvement of measurement accuracy by combined evaluation of CMM and tracking interferometer measurements, 1172-1175(2003).
[72] 陈洪芳, 郑博文, 石照耀, 等. 基于激光追踪仪多站位测量的CMM空域坐标修正方法[J]. 中国激光, 2017, 44(3): 0304003. doi: 10.3788/cjl201744.0304003CHENH F, ZHENGB W, SHIZH Y, et al. CMM spatial coordinate correction method based on laser tracer multistation measurement[J]. Chinese Journal of Lasers, 2017, 44(3): 0304003.(in Chinese). doi: 10.3788/cjl201744.0304003
[73] 陈洪芳, 孙衍强, 王亚韦, 等. 高精度激光追踪测量方法及实验研究[J]. 中国激光, 2018, 45(1): 0104003. doi: 10.3788/cjl201845.0104003CHENH F, SUNY Q, WANGY W, et al. High-precision laser tracking measurement method and experimental study[J]. Chinese Journal of Lasers, 2018, 45(1): 0104003.(in Chinese). doi: 10.3788/cjl201845.0104003
[74] H LIN, F KELLER, M STEIN. Influence and compensation of CMM geometric errors on 3D gear measurements. Measurement, 151, 107110(2020).
[75] 李笑宇, 林虎, 薛梓, 等. 激光跟踪多边测量自标定优化方法[J]. 仪器仪表学报, 2021, 42(2): 10-17.LIX Y, LINH, XUEZH, et al. Self-calibration optimization method for laser tracking multilateral measurement[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 10-17.(in Chinese)
[76] E K RAFELD, N KOPPERT, M FRANKE et al. Recent developments on an interferometric multilateration measurement system for large volume coordinate metrology. Measurement Science and Technology, 33(2022).
[79] F HARTIG, H LIN, K KNIEL et al. Laser tracker performance quantification for the measurement of involute profile and helix measurements. Measurement, 46, 2837-2844(2013).
[80] F HÄRTIG, H LIN, K KNIEL et al. Standard conforming involute gear metrology using an articulated arm coordinate measuring system. Measurement Science and Technology, 23, 105011(2012).
[81] 陈洪芳,闫昊,石照耀. 面向特大型齿轮的激光跟踪多站位定位[J]. 光学 精密工程, 2014, 22(9): 2375-2380. doi: 10.3788/ope.20142209.2375CHENH F, YANH, SHIZH Y. Laser tracking multi-station positioning method for Mega-gear[J]. Opt. Precision Eng., 2014, 22(9): 2375-2380.(in Chinese). doi: 10.3788/ope.20142209.2375
[82] 郭天太, 孙培渊, 刘维, 等. 特大齿轮齿廓偏差测量方法的探究[J]. 工具技术, 2020, 54(6):64-67. doi: 10.3969/j.issn.1000-7008.2020.06.016GUOT T, SUNP Y, LIUW, et al. Research on measuring method of tooth deviation of extra large gears[J]. Tool Engineering, 2020, 54(6):64-67.(in Chinese). doi: 10.3969/j.issn.1000-7008.2020.06.016
[83] 徐星, 王建华. 激光跟踪仪建立齿轮测量坐标系的不确定度分析[J]. 工具技术, 2022, 56(11):157-160. doi: 10.3969/j.issn.1000-7008.2022.11.030XUX, WANGJ H. Uncertainty analysis of gear measuring coordinate system established by laser tracker[J]. Tool Engineering, 2022, 56(11):157-160.(in Chinese). doi: 10.3969/j.issn.1000-7008.2022.11.030
[84] 石照耀, 张白, 林家春, 等. 特大型齿轮激光跟踪在位测量原理及关键技术[J]. 光学 精密工程, 2013, 21(9): 2340-2347. doi: 10.3788/ope.20132109.2340SHIZH Y, ZHANGB, LINJ CH, et al. Principle and critical technology of in-site measurement system with laser tracker for mega gear[J]. Opt. Precision Eng., 2013, 21(9): 2340-2347.(in Chinese). doi: 10.3788/ope.20132109.2340
[85] 林虎, 薛梓, 杨国梁. 一种大齿轮多参量标准样板: CN211346733U[P]. 2020-08-25.LINH, XUEZ, YANGG L. Bull gear multi-parameter standard sample plate: CN211346733U[P]. 2020-08-25.(in Chinese)
[86] 凌四营, 石照耀, 宋洪侠, 等. 一种连轴装配式大齿轮渐开线样板: CN202111128774.9[P]. 2022-06-14.LINGS Y, SHIZH Y, SONGH X, et al. A large gear involute artifact assembled with mandrel: 202111128774.9[P]. 2022-06-14.(in Chinese)
[87] G L DAI, M NEUGEBAUER, M STEIN et al. Overview of 3D micro- and nanocoordinate metrology at PTB. Applied Sciences, 6, 257(2016).
[88] N FERREIRA, T KRAH, D C JEONG et al. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears. Measurement Science and Technology, 25(2014).
[89] D METZ, S JANTZEN, D WESSEL et al. Integration of an isotropic microprobe and a microenvironment into a conventional CMM. Measurement Science and Technology, 30, 115007(2019).
[90] 石照耀, 赵保亚, 于渤, 等. 齿轮特征线统一模型及在齿轮三维误差评定中的应用[J]. 机械工程学报, 2022, 58(24): 1-9. doi: 10.3901/jme.2022.24.001SHIZH Y, ZHAOB Y, YUB, et al. Unified model of gear characteristic line and its application in gear three-dimensional error evaluation[J]. Journal of Mechanical Engineering, 2022, 58(24): 1-9.(in Chinese). doi: 10.3901/jme.2022.24.001
[91] 石照耀, 赵保亚, 于渤, 等. 齿轮三维误差表征与分解[J]. 机械工程学报, 2022, 58(6): 1-9. doi: 10.3901/jme.2022.06.001SHIZH Y, ZHAOB Y, YUB, et al. Characterization and decomposition of three-dimensional error of gear[J]. Journal of Mechanical Engineering, 2022, 58(6): 1-9.(in Chinese). doi: 10.3901/jme.2022.06.001
[92] Z Y SHI, Y Q SUN, X Y WANG et al. Acquisition and assessment of gear holistic deviations based on laser measurement. Photonics, 9, 735(2022).
[93] X GUO, Z SHI, B YU et al. 3D measurement of gears based on a line structured light sensor. Precision Engineering, 61, 160-169(2020).
[96] H FUJIO, A KUBO, S SAITOH et al. Laser holographic measurement of tooth flank form of cylindrical involute gear. Journal of Mechanical Design, 116, 721-729(1994).
[97] S FANG, L WANG, M KOMORI et al. Design of laser interferometric system for measurement of gear tooth flank. Optik, 122, 1301-1304(2011).
[98] P YANG, S YANG, Y XIAO et al. Calibration of geometric distortion based on a reference sheet in oblique laser interferometry. Optik, 183, 47-54(2019).
[99] E S GADELMAWLA. Computer vision algorithms for measurement and inspection of spur gears. Measurement, 44, 1669-1678(2011).
[100] 石照耀, 方一鸣, 王笑一. 齿轮视觉检测仪器与技术研究进展[J]. 激光与光电子学进展, 2022, 59(14): 1415006.SHIZH Y, FANGY M, WANGX Y. Research progress in gear machine vision inspection instrument and technology[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415006.(in Chinese)
[101] L DONG, W F CHEN, S Y YANG et al. A new machine vision-based intelligent detection method for gear grinding burn. The International Journal of Advanced Manufacturing Technology, 125, 4663-4677(2023).
[102] A ALLAM, M MOUSSA, C TARRY et al. Detecting teeth defects on automotive gears using deep learning. Sensors, 21, 8480(2021).
[103] 王宁, 段振云, 赵文辉, 等. 齿轮齿廓总偏差视觉测量方法研究[J]. 机械传动, 2017, 41(11): 28-32.WANGN, DUANZH Y, ZHAOW H, et al. Research on visual measurement method of total deviation of gear tooth profile[J]. Journal of Mechanical Transmission, 2017, 41(11): 28-32.(in Chinese)
[104] 汤洁, 刘小兵, 李睿. 未知参数小模数齿轮齿距和齿廓偏差视觉测量[J]. 光学 精密工程, 2021, 29(1):100-109. doi: 10.37188/OPE.20212901.0100TANGJ, LIUX B, LIR. Vision measurement of pitch and profile deviations for small modulus gears with unknown parameters[J]. Opt. Precision Eng., 2021, 29(1): 100-109.(in Chinese). doi: 10.37188/OPE.20212901.0100
[105] G KOULIN, J ZHANG, R C FRAZER et al. A new profile roughness measurement approach for involute helical gears. Measurement Science and Technology, 28(2017).
[106] 林家春, 滕辰, 李晗晓, 等. 基于粗糙度轮廓仪的圆柱齿轮齿廓形状偏差测量[J]. 仪器仪表学报, 2020, 41(12): 15-22.LINJ CH, TENGCH, LIH X, et al. Tooth profile deviation measurement of cylindrical gears based on a roughness profilometer[J]. Chinese Journal of Scientific Instrument, 2020, 41(12): 15-22.(in Chinese)
[107] 石照耀, 于渤, 宋辉旭, 等. 20年来齿轮测量技术的发展[J]. 中国机械工程, 2022, 33(9): 1009-1024. doi: 10.3969/j.issn.1004-132X.2022.09.001SHIZH Y, YUB, SONGH X, et al. Development of gear measurement technology during last 20 years[J]. China Mechanical Engineering, 2022, 33(9): 1009-1024.(in Chinese). doi: 10.3969/j.issn.1004-132X.2022.09.001
[108] ISO. ISO(2007).
[109] 凌明, 凌四营, 刘远航, 等. 测头半径对1级渐开线样板齿廓偏差测量的影响[J]. 仪器仪表学报, 2022, 43(4): 121-128.LINGM, LINGS Y, LIUY H, et al. Effect of probe radius on the measurement for profile deviations of class-1 gear involute artefact[J]. Chinese Journal of Scientific Instrument, 2022, 43(4): 121-128.(in Chinese)
[110] M LING, S Y LING, X Y LI et al. Effect on the measurement for gear involute profile caused by the error of probe position. Measurement Science and Technology, 33, 115013(2022).