• Laser & Optoelectronics Progress
  • Vol. 61, Issue 21, 2104001 (2024)
Juan Zhang, Jingjing Long, and Shaoying Ke*
Author Affiliations
  • Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, Fujian , China
  • show less
    DOI: 10.3788/LOP240498 Cite this Article Set citation alerts
    Juan Zhang, Jingjing Long, Shaoying Ke. Effect of Groove Ring Depth in the Multiplication Region on the Performance of a Bonded InGaAs/Si Avalanche Photodiode[J]. Laser & Optoelectronics Progress, 2024, 61(21): 2104001 Copy Citation Text show less
    References

    [1] Liu X B, Li X T, Li Y X et al. Three-terminal germanium-on-silicon avalanche photodiode with extended p-charge layer for dark current reduction[J]. Photonics Research, 10, 1956-1963(2022).

    [2] Kannan H, Stavro J, Mukherjee A et al. Ultralow dark currents in avalanche amorphous selenium photodetectors using solution-processed quantum dot blocking layer[J]. ACS Photonics, 7, 1367-1374(2020).

    [3] Liu W, Shi Z H, Gao J H. Enhanced initial photocurrent caused by the multiplication process at punch-through voltage in InGaAs/InP avalanche photodiode with highly doped charge layer[J]. Infrared Physics & Technology, 124, 104218(2022).

    [4] Xiang Y L, Cao H Z, Liu C Y et al. High-performance waveguide Ge/Si avalanche photodiode with a lateral separate-absorption-charge-multiplication structure[J]. Optics Express, 30, 11288-11297(2022).

    [5] Cao Y, Blain T, Taylor-Mew J D et al. Extremely low excess noise avalanche photodiode with GaAsSb absorption region and AlGaAsSb avalanche region[J]. Applied Physics Letters, 122, 051103(2023).

    [6] Zhu S J, Chen X W, Liu X Y et al. Recent progress in and perspectives of underwater wireless optical communication[J]. Progress in Quantum Electronics, 73, 100274(2020).

    [7] Signorelli F, Telesca F, Conca E et al. Low-noise InGaAs/InP single-photon avalanche diodes for fiber-based and free-space applications[J]. IEEE Journal of Selected Topics in Quantum Electronics(2022).

    [8] Yang I, Kim S, Niihori M et al. Highly uniform InGaAs/InP quantum well nanowire array-based light emitting diodes[J]. Nano Energy, 71, 104576(2020).

    [9] Liang Y, Xu B, Fei Q L et al. Low-timing-jitter GHz-gated InGaAs/InP single-photon avalanche photodiode for LIDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 3801807(2022).

    [10] Tang M C, Chen S M, Wu J et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers[J]. Optics Express, 22, 11528-11535(2014).

    [11] Zhao Y Y, Chen J. Performance improvement of InGaAs/InP SAGCM avalanche photodiode by optimizing the multiplication layer[J]. Proceedings of SPIE, 12154, 121540F(2022).

    [12] Li Z B, Hou Z P, Ye H F et al. Investigation of excess noise factor of InGaAs/InP SWIR APDs by direct power method[J]. Proceedings of SPIE, 12169, 121693F(2022).

    [13] Guo B T, Jin X, Lee S et al. Impact ionization coefficients of digital alloy and random alloy Al0.85Ga0.15As0.56 Sb0.44 in a wide electric field range[J]. Journal of Lightwave Technology, 40, 4758-4764(2022).

    [14] Lin P J, Ho W J, Liu J J et al. High-speed 1550-nm avalanche photodiode based on InAlAs-multiplicaltion and mesa-structure[C](2020).

    [15] Jiao J L, Chen X Q, Rao Y J et al. High-quality InGaAs films bonded on Si substrate with a thin polycrystalline Si intermediate layer[J]. Applied Surface Science, 628, 157296(2023).

    [16] Liu J L, Xu Y N, Li Y F et al. Exploiting the single-photon detection performance of InGaAs negative-feedback avalanche diode with fast active quenching[J]. Optics Express, 29, 10150-10161(2021).

    [17] Datta E, Chattopadhyay A, Mallik A. A comparison of analog performance, linearity, and distortion characteristics between symmetric InGaAs and asymmetric InGaAs/InP MOSFETs[J]. IEEE Transactions on Electron Devices, 68, 1570-1576(2021).

    [18] Cristobal E, Fetters M, Liu A W K et al. High peak power quantum cascade lasers monolithically integrated onto silicon with high yield and good near-term reliability[J]. Applied Physics Letters, 122, 141108(2023).

    [19] Falcão B P, Leitão J P, Soares M R et al. Size-dependent critical transition in the origin of light emission from core-shell Si-SiO2 nanoparticles[J]. Journal of Materials Chemistry C, 8, 9012-9023(2020).

    [20] Geum D M, Kim S K, Lee S B et al. Monolithic 3D integration of InGaAs photodetectors on Si MOSFETs using sequential fabrication process[J]. IEEE Electron Device Letters, 41, 433-436(2020).

    [21] Miao Y H, Lin H X, Li B et al. Review of Ge(GeSn) and InGaAs avalanche diodes operating in the SWIR spectral region[J]. Nanomaterials, 13, 606(2023).

    [22] Tomioka K, Ishizaka F, Motohisa J et al. InGaAs-InP core-shell nanowire/Si junction for vertical tunnel field-effect transistor[J]. Applied Physics Letters, 117, 123501(2020).

    [23] Agishev R, Wang Z Z, Liu D. Atmospheric CW S-lidars with Si/InGaAs arrays: potentialities in real environment[J]. Remote Sensing, 15, 2291(2023).

    [24] Jang J, Shim J, Lim J et al. Grating-resonance InGaAs narrowband photodetector for multispectral detection in NIR-SWIR region[C](2022).

    [25] Sulaman M, Yang S Y, Bukhtiar A et al. Hybrid bulk-heterojunction of colloidal quantum dots and mixed-halide perovskite nanocrystals for high-performance self-powered broadband photodetectors[J]. Advanced Functional Materials, 32, 2201527(2022).

    [26] Bucamp A, Coinon C, Troadec D et al. Gate length dependent transport properties of in-plane core-shell nanowires with raised contacts[J]. Nano Research, 13, 61-66(2020).

    [27] Zota C B, Convertino C, Sousa M et al. High-frequency quantum well InGaAs-on-Si MOSFETs with scaled gate lengths[J]. IEEE Electron Device Letters, 40, 538-541(2019).

    [28] Chen G Y, Yu Y, Shi Y et al. High-speed photodetectors on silicon photonics platform for optical interconnect[J]. Laser & Photonics Reviews, 16, 2200117(2022).

    [29] Ke S Y, Xiao X T, Jiao J L et al. Theoretical achievement of THz gain-bandwidth product of wafer-bonded InGaAs/Si avalanche photodiodes with poly-Si bonding layer[J]. IEEE Transactions on Electron Devices, 69, 1123-1128(2022).

    [30] Ke S Y, Chen Z X, Zhou J R et al. Theoretical prediction of high-performance room-temperature InGaAs/Si single-photon avalanche diode fabricated by semiconductor interlayer bonding[J]. IEEE Transactions on Electron Devices, 68, 1694-1701(2021).

    [31] Bao S Y, Mu H L, Zhou J R et al. Effect of different crystalline Ge film bonding layers on properties of InGaAs/Si avalanche photodiodes[J]. Chinese Journal of Lasers, 50, 1403001(2023).

    [32] Zhou J R, Bao S Y, She S X et al. Effect of a-Si1-xGex bonding layer with different Ge compositions on the performance of InGaAs/Si avalanche photodiode[J]. Acta Photonica Sinica, 51, 0951611(2022).

    [33] Wan C, Hao H, Zhao Q Y et al. Application of single photon detection in wireless optical communication transceiver technology[J]. Laser & Optoelectronics Progress, 59, 0500001(2022).

    [34] Wu X J, Ye H F, Ai J et al. Application progress of silicon photomultiplier in radiation detection[J]. Laser & Optoelectronics Progress, 59, 2100004(2022).

    Juan Zhang, Jingjing Long, Shaoying Ke. Effect of Groove Ring Depth in the Multiplication Region on the Performance of a Bonded InGaAs/Si Avalanche Photodiode[J]. Laser & Optoelectronics Progress, 2024, 61(21): 2104001
    Download Citation