[1] J. Li, R. Ge, K. Lin, J. Wang, Y. He et al., Advances in the application of microneedles in the treatment of local organ diseases. Small 20, 2306222 (2024).
[2] L.K. Vora, A.H. Sabri, P.E. McKenna, A. Himawan, A.R.J. Hutton et al., Microneedle-based biosensing. Nat. Rev. Bioeng. 2, 64–81 (2024).
[3] K. Glover, D. Mishra, S. Gade, L.K. Vora, Y. Wu et al., Microneedles for advanced ocular drug delivery. Adv. Drug Deliv. Rev. 201, 115082 (2023).
[4] M. Zheng, T. Sheng, J. Yu, Z. Gu, C. Xu, Microneedle biomedical devices. Nat. Rev. Bioeng. 2, 324–342 (2023).
[5] Y.N. Ertas, D. Ertas, A. Erdem, F. Segujja, S. Dulchavsky et al., Diagnostic, therapeutic, and theranostic multifunctional microneedles. Small (2024).
[6] H. Chopra, Priyanka, O.P. Choudhary, T.B. Emran, Microneedles for ophthalmic drug delivery: recent developments. Int. J. Surg. 109, 551–552 (2023).
[7] X. Tang, J. Liu, R. Yan, Q. Peng, Carbohydrate polymer-based bioadhesive formulations and their potentials for the treatment of ocular diseases: a review. Int. J. Biol. Macromol. 242, 124902 (2023).
[8] T. Moniz, S.A. Costa Lima, S. Reis, Marine polymeric microneedles for transdermal drug delivery. Carbohyd. Polym. 266, 118098 (2021).
[9] F. Damiri, N. Kommineni, S.O. Ebhodaghe, R. Bulusu, V. Jyothi et al., Microneedle-based natural polysaccharide for drug delivery systems (DDS): progress and challenges. Pharmaceuticals 15, 190 (2022).
[10] R. Day, Polysaccharides in ocular tissue*. Am. J. Ophthalmol. 33, 224–226 (1950).
[11] S. Dou, Q. Wang, B. Zhang, C. Wei, H. Wang et al., Single-cell atlas of keratoconus corneas revealed aberrant transcriptional signatures and implicated mechanical stretch as a trigger for keratoconus pathogenesis. Cell Discov. 8, 66 (2022).
[12] A.S. Monzel, M. Levin, M. Picard, The energetics of cellular life transitions. Life Metab. 3, load051 (2024).
[13] N.S. Chandra, S. Gorantla, S. Priya, G. Singhvi, Insight on updates in polysaccharides for ocular drug delivery. Carbohyd. Polym. 297, 120014 (2022).
[14] J. Pushpamalar, P. Meganathan, H.L. Tan, N.A. Dahlan, L.-T. Ooi et al., Development of a polysaccharide-based hydrogel drug delivery system (DDS): an update. Gels 7, 153 (2021).
[15] R.A. Armstrong, R.P. Cubbidge, Chapter 1 - the eye and vision: an overview, in Handbook of Nutrition, Diet and the Eye. ed. by V.R. Preedy (Academic Press, San Diego, 2014), pp.3–9
[16] 1-eye: anatomy, physiology and barriers to drug delivery, in Ocular Transporters and Receptors. ed. by K. Cholkar, S.R. Dasari, D. Pal, and A.K. Mitra (Woodhead Publishing, 2013), pp.1–36
[17] C.E. Willoughby, D. Ponzin, S. Ferrari, A. Lobo, K. Landau et al., Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function—a review. Clin. Exp. Ophthalmol. 38, 2–11 (2010).
[18] B. Chakrabarti, J.W. Park, E.S. Stevens, Glycosaminoglycans: structure and interactio. Crit. Rev. Biochem. Mol. Biol. 8, 225–313 (1980).
[19] M. Zako, M. Yoneda, Chapter 8-functional glycosaminoglycans in the eye, in Carbohydrate Chemistry, Biology and Medical Applications. ed. by H.G. Garg, M.K. Cowman, C.A. Hales (Elsevier, Oxford, 2008), pp.181–208
[20] S. Puri, Y.M. Coulson-Thomas, T.F. Gesteira, V.J. Coulson-Thomas, Distribution and function of glycosaminoglycans and proteoglycans in the development, homeostasis and pathology of the ocular surface. Front. Cell Dev. Biol. 8, 731 (2020).
[21] C.T. Mörner, Untersuchung der proteїnsubstanzen in den leichtbrechenden medien des auges i. Biol. Chem. 18, 61–106 (1894).
[22] K. Meyer, J.W. Palmer, The polysaccharide of the vitreous humor. J. Biol. Chem. 107, 629–634 (1934).
[23] X. Lin, T. Mekonnen, S. Verma, C. Zevallos-Delgado, M. Singh et al., Hyaluronan modulates the biomechanical properties of the cornea. Invest. Ophthalmol. Vis. Sci. 63, 6 (2022).
[24] L. Zhan-feng, S. Han-wen, Progress of the research on chemically modifications of polysaccharide. J Hebei Univ (Nat Sci Ed) 25, 104 (2005).
[25] L. Huang, M. Shen, G.A. Morris, J. Xie, Sulfated polysaccharides: immunomodulation and signaling mechanisms. Trends Food Sci. Technol. 92, 1–11 (2019).
[26] M. Inatani, H. Tanihara, Proteoglycans in retina. Prog. Retin. Eye Res. 21, 429–447 (2002).
[27] K.L. Segars, V. Trinkaus-Randall, Glycosaminoglycans: Roles in wound healing, formation of corneal constructs and synthetic corneas. Ocul. Surf. 30, 85–91 (2023).
[28] E.A. Balazs, G. Armand, Glycosaminoglycans and proteoglycans of ocular tissues, in Glycosaminoglycans and Proteoglycans in Physiological and Pathological Processes of Body Systems. ed. by R.V.R.S. Varma, S. Karger (Karger Publishers, Switzerland, 1982), pp.480–499
[29] A. Tawara, H.H. Varner, J.G. Hollyfield, Distribution and characterization of sulfated proteoglycans in the human trabecular tissue. Invest. Ophthalmol. Vis. Sci. 30, 2215–2231 (1989). PMID: 2793361.
[30] D.M. Snow, M. Watanabe, P.C. Letourneau, J. Silver, A chondroitin sulfate proteoglycan may influence the direction of retinal ganglion cell outgrowth. Development 113, 1473–1485 (1991).
[31] Z. Zhuola, S. Barrett, Y.A. Kharaz, R. Akhtar, Nanostructural and mechanical changes in the sclera following proteoglycan depletion. Model. Artif. Intell. Ophthalmol. 2, 14–17 (2018).
[32] J.A. Rada, V.R. Achen, S. Penugonda, R.W. Schmidt, B.A. Mount, Proteoglycan composition in the human sclera during growth and aging. Invest. Ophthalmol. Vis. Sci. 41, 1639–1648 (2000). PMID: 10845580.
[33] J.A. Summers, The sclera and its role in regulation of the refractive state, in Pathologic Myopia. ed. by R.F. Spaide, K. Ohno-Matsui, L.A. Yannuzzi (Springer, Cham, 2021), pp.87–104.
[34] J.A. Rada, V.R. Achen, C.A. Perry, P.W. Fox, Proteoglycans in the human sclera. Evidence for the presence of aggrecan. Invest. Ophthalmol. Vis. Sci. 38, 1740–1751 (1997). PMID: 9286262.
[35] N. Jabeen, M. Atif, Polysaccharides based biopolymers for biomedical applications: a review. Polym. Adv. Technol. 35, e6203 (2024).
[36] Y. Yu, M. Shen, Q. Song, J. Xie, Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohyd. Polym. 183, 91–101 (2018).
[37] M. Kenchegowda, U. Hani, A. Al Fatease, N. Haider, K. Ramesh et al., Tiny titans-unravelling the potential of polysaccharides and proteins based dissolving microneedles in drug delivery and theranostics: a comprehensive review. Int. J. Biol. Macromol. 253, 127172 (2023).
[38] D.F.S. Fonseca, C. Vilela, A.J.D. Silvestre, C.S.R. Freire, A compendium of current developments on polysaccharide and protein-based microneedles. Int. J. Biol. Macromol. 136, 704–728 (2019).
[39] R.S. Bhadale, V.Y. Londhe, A systematic review of carbohydrate-based microneedles: current status and future prospects. J. Mater. Sci. Mater. Med. 32, 89 (2021).
[40] A.I. Barbosa, F. Serrasqueiro, T. Moniz, S.A. Costa Lima, S. Reis, Marine polysaccharides for skin drug delivery: hydrogels and microneedle solutions, in Marine Biomaterials: Drug Delivery and Therapeutic Applications. ed. by S. Jana, S. Jana (Springer Nature Singapore, Singapore, 2022), pp.209–250
[41] P. Snetkov, K. Zakharova, S. Morozkina, R. Olekhnovich, M. Uspenskaya, Hyaluronic acid: the influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers 12, 1800 (2020).
[42] I. Saha, V.K. Rai, Hyaluronic acid based microneedle array: recent applications in drug delivery and cosmetology. Carbohyd. Polym. 267, 118168 (2021).
[43] H. Kang, Z. Zuo, R. Lin, M. Yao, Y. Han et al., The most promising microneedle device: present and future of hyaluronic acid microneedle patch. Drug Deliv. 29, 3087–3110 (2022).
[44] H. Shi, S. Huai, H. Wei, Y. Xu, L. Lei et al., Dissolvable hybrid microneedle patch for efficient delivery of curcumin to reduce intraocular inflammation. Int. J. Pharm. 643, 123205 (2023).
[45] Y. Jiang, Y. Jin, C. Feng, Y. Wu, W. Zhang et al., Engineering hyaluronic acid microneedles loaded with Mn2+ and temozolomide for topical precision therapy of melanoma. Adv. Healthc. Mater. 13, e2303215 (2023).
[46] J.H. Tay, Y.H. Lim, M. Zheng, Y. Zhao, W.S. Tan et al., Development of hyaluronic acid-silica composites via in situ precipitation for improved penetration efficiency in fast-dissolving microneedle systems. Acta Biomater. 172, 175–187 (2023).
[47] Y. Wu, L.K. Vora, R.F. Donnelly, T.R.R. Singh, Rapidly dissolving bilayer microneedles enabling minimally invasive and efficient protein delivery to the posterior segment of the eye. Drug Deliv. Transl. Res. 13, 2142–2158 (2023).
[48] G. Bonfante, H. Lee, L. Bao, J. Park, N. Takama et al., Comparison of polymers to enhance mechanical properties of microneedles for bio-medical applications. Micro Nano Syst. Lett. 8, 1–13 (2020).
[49] S. Zhang, L. Yang, S. Hong, J. Liu, J. Cheng et al., Collagen type I–loaded methacrylamide hyaluronic acid hydrogel microneedles alleviate stress urinary incontinence in mice: a novel treatment and prevention strategy. Colloids Surf. B Biointerfaces 222, 113085 (2023).
[50] A. Than, C. Liu, H. Chang, P.K. Duong, C.M.G. Cheung et al., Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nat. Commun. 9, 4433 (2018).
[51] S. Baek, K.P. Lee, C.S. Han, S.H. Kwon, S.J. Lee, Hyaluronic acid-based biodegradable microneedles loaded with epidermal growth factor for treatment of diabetic foot. Macromol. Res. 32, 13–22 (2024).
[52] B. Wang, W. Zhang, Q. Pan, J. Tao, S. Li et al., Hyaluronic acid-based CuS nanoenzyme biodegradable microneedles for treating deep cutaneous fungal infection without drug resistance. Nano Lett. 23, 1327–1336 (2023).
[53] Y. Yu, Y. Gao, Y. Zeng, W. Ge, C. Tang et al., Multifunctional hyaluronic acid/gelatin methacryloyl core-shell microneedle for comprehensively treating oral mucosal ulcers. Int. J. Biol. Macromol. 266, 131221 (2024).
[54] S.M. Whitcup, M.R. Robinson, Development of a dexamethasone intravitreal implant for the treatment of noninfectious posterior segment uveitis. Ann. N. Y. Acad. Sci. 1358, 1–12 (2015).
[55] P. Suriyaamporn, P. Opanasopit, T. Ngawhirunpat, W. Rangsimawong, Computer-aided rational design for optimally Gantrez® S-97 and hyaluronic acid-based dissolving microneedles as a potential ocular delivery system. J. Drug Deliv. Sci. Technol. 61, 102319 (2021).
[56] H. Shi, J. Zhou, Y. Wang, Y. Zhu, D. Lin et al., A rapid corneal healing microneedle for efficient ocular drug delivery. Small 18, 2104657 (2022).
[57] S. Juhng, J. Song, J. You, J. Park, H. Yang et al., Fabrication of liraglutide-encapsulated triple layer hyaluronic acid microneedles (TLMs) for the treatment of obesity. Lab Chip 23, 2378–2388 (2023).
[58] Y. Li, J. Lin, P. Wang, F. Zhu, M. Wu et al., Tumor microenvironment-responsive yolk–shell NaCl@virus-inspired tetrasulfide-organosilica for ion-interference therapy via osmolarity surge and oxidative stress amplification. ACS Nano 16, 7380–7397 (2022).
[59] Y. Shi, M. Yu, K. Qiu, T. Kong, C. Guo et al., Immuno-modulation of tumor and tumor draining lymph nodes through enhanced immunogenic chemotherapy by nano-complexed hyaluronic acid/polyvinyl alcohol microneedle. Carbohyd. Polym. 325, 121491 (2024).
[60] Y. Li, J. Lin, P. Wang, Q. Luo, H. Lin et al., Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy. ACS Nano 13, 12912–12928 (2019).
[61] J. Yang, Z. Chu, Y. Jiang, W. Zheng, J. Sun et al., Multifunctional hyaluronic acid microneedle patch embedded by cerium/zinc-based composites for accelerating diabetes wound healing. Adv. Healthc. Mater. 12, 2300725 (2023).
[62] S. Liu, Q. Bai, Y. Jiang, Y. Gao, Z. Chen et al., Multienzyme-like nanozyme encapsulated ocular microneedles for keratitis treatment. Small 20, 2308403 (2024).
[63] M. Liang, L. Shang, Y. Yu, Y. Jiang, Q. Bai et al., Ultrasound activatable microneedles for bilaterally augmented sono-chemodynamic and sonothermal antibacterial therapy. Acta Biomater. 158, 811–826 (2023).
[64] S. Shi, Y. Jiang, Y. Yu, M. Liang, Q. Bai et al., Piezo-augmented and photocatalytic nanozyme integrated microneedles for antibacterial and anti-inflammatory combination therapy. Adv. Funct. Mater. 33, 2210850 (2023).
[65] N. Dabholkar, S. Gorantla, T. Waghule, V.K. Rapalli, A. Kothuru et al., Biodegradable microneedles fabricated with carbohydrates and proteins: revolutionary approach for transdermal drug delivery. Int. J. Biol. Macromol. 170, 602–621 (2021).
[66] W. Du, X. Li, M. Zhang, G. Ling, P. Zhang, Investigation of the antibacterial properties of hyaluronic acid microneedles based on chitosan and MoS2. J. Mater. Chem. B 11, 7169–7181 (2023).
[67] A. Chandrasekharan, Y.J. Hwang, K.Y. Seong, S. Park, S. Kim et al., Acid-treated water-soluble chitosan suitable for microneedle-assisted intracutaneous drug delivery. Pharmaceutics 11, 209 (2019).
[68] Y. Yang, S. Wang, Y. Wang, X. Wang, Q. Wang et al., Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv. 32, 1301–1316 (2014).
[69] D.A. Castilla-Casadiego, K.A. Miranda-Muñoz, J.L. Roberts, A.D. Crowell, D. Gonzalez-Nino et al., Biodegradable microneedle patch for delivery of meloxicam for managing pain in cattle. PLoS ONE 17, e0272169 (2022).
[70] A. Zamboulis, S. Nanaki, G. Michailidou, I. Koumentakou, M. Lazaridou et al., Chitosan and its derivatives for ocular delivery formulations: recent advances and developments. Polymers 12, 1519 (2020).
[71] M.-C. Chen, M.-H. Ling, K.-Y. Lai, E. Pramudityo, Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromol 13, 4022–4031 (2012).
[72] C. Ryall, S. Chen, S. Duarah, J. Wen, Chitosan-based microneedle arrays for dermal delivery of Centella asiatica. Int. J. Pharm. 627, 122221 (2022).
[73] D.A. Castilla-Casadiego, H. Carlton, D. Gonzalez-Nino, K.A. Miranda-Muñoz, R. Daneshpour et al., Design, characterization, and modeling of a chitosan microneedle patch for transdermal delivery of meloxicam as a pain management strategy for use in cattle. Mater. Sci. Eng. C 118, 111544 (2021).
[74] P. Suriyaamporn, P. Opanasopit, W. Rangsimawong, T. Ngawhirunpat, Optimal design of novel microemulsions-based two-layered dissolving microneedles for delivering fluconazole in treatment of fungal eye infection. Pharmaceutics 14, 472 (2022).
[75] S. Manna, R.K. Banerjee, J.J. Augsburger, M.F. Al-Rjoub, A. Donnell et al., Biodegradable chitosan and polylactic acid-based intraocular micro-implant for sustained release of methotrexate into vitreous: analysis of pharmacokinetics and toxicity in rabbit eyes. Graefes Arch. Clin. Exp. Ophthalmol. 253, 1297–1305 (2015).
[76] L. Popa, M.V. Ghica, C.E. Dinu-Pîrvu, T. Irimia, Chitosan: A good candidate for sustained release ocular drug delivery systems, in Chitin-Chitosan—Myriad Functionalities in Science and Technology. (InTech, London, UK, 2018), pp.283–310.
[77] W. Li, E.S. Thian, M. Wang, Z. Wang, L. Ren, Surface design for antibacterial materials: from fundamentals to advanced strategies. Adv. Sci. 8, 2100368 (2021).
[78] W. Li, H. Chen, J. Cai, M. Wang, X. Zhou et al., Poly (pentahydropyrimidine)-based hybrid hydrogel with synergistic antibacterial and pro-angiogenic ability for the therapy of diabetic foot ulcers. Adv. Funct. Mater. 33, 2303147 (2023).
[79] W. Li, J. Cai, W. Zhou, X. Zhao, M. Wang et al., Poly (aspartic acid)-based self-healing hydrogel with precise antibacterial ability for rapid infected-wound repairing. Colloids Surf. B Biointerfaces 221, 112982 (2023).
[80] J. Chi, X. Zhang, C. Chen, C. Shao, Y. Zhao et al., Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact. Mater. 5, 253–259 (2020).
[81] S.R. Pardeshi, M.P. More, C.V. Pardeshi, P.J. Chaudhari, A.D. Gholap et al., Novel crosslinked nanoparticles of chitosan oligosaccharide and dextran sulfate for ocular administration of dorzolamide against glaucoma. J. Drug Deliv. Sci. Technol. 86, 104719 (2023).
[82] A. Kumari, P.K. Sharma, V.K. Garg, G. Garg, Ocular inserts—advancement in therapy of eye diseases. J. Adv. Pharm. Technol. Res. 1, 291–296 (2010).
[83] R. Yuan, N. Yang, Y. Huang, W. Li, Y. Zeng et al., Layer-by-layer microneedle-mediated rhEGF transdermal delivery for enhanced wound epidermal regeneration and angiogenesis. ACS Appl. Mater. Interfaces 15, 21929–21940 (2023).
[84] Z. Chen, Y. Zhang, K. Feng, T. Hu, B. Huang et al., Facile fabrication of quaternized chitosan-incorporated biomolecular patches for non-compressive haemostasis and wound healing. Fundam. Res. (2023).
[85] H. Wei, S. Liu, Z. Tong, T. Chen, M. Yang et al., Hydrogel-based microneedles of chitosan derivatives for drug delivery. React. Funct. Polym. 172, 105200 (2022).
[86] E. Díaz-Montes, Dextran: sources, structures, and properties. Polysaccharides 2, 554–565 (2021).
[87] S. Huang, H. Liu, S. Huang, T. Fu, W. Xue et al., Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma. Carbohyd. Polym. 246, 116650 (2020).
[88] J. Liang, Y. Yu, C. Li, Q. Li, P. Chen et al., Tofacitinib combined with melanocyte protector α-MSH to treat vitiligo through dextran based hydrogel microneedles. Carbohyd. Polym. 305, 120549 (2023).
[89] S. Fakhraei Lahiji, Y. Jang, I. Huh, H. Yang, M. Jang et al., Exendin-4–encapsulated dissolving microneedle arrays for efficient treatment of type 2 diabetes. Sci. Rep. 8, 1170 (2018).
[90] J. Leelawattanachai, K. Panyasu, K. Prasertsom, S. Manakasettharn, H. Duangdaw et al., Highly stable and fast-dissolving ascorbic acid-loaded microneedles. Int. J. Cosmet. Sci. 45, 612–626 (2023).
[91] H. Liu, B. Wang, M. Xing, F. Meng, S. Zhang et al., Thermal stability of exenatide encapsulated in stratified dissolving microneedles during storage. Int. J. Pharm. 636, 122863 (2023).
[92] A.S. Bernd, M. Aihara, J.D. Lindsey, R.N. Weinreb, Influence of molecular weight on intracameral dextran movement to the posterior segment of the mouse eye. Invest. Ophthalmol. Vis. Sci. 45, 480–484 (2004).
[93] J.-S. Yang, Y.-J. Xie, W. He, Research progress on chemical modification of alginate: a review. Carbohyd. Polym. 84, 33–39 (2011).
[94] X. Mei, Y. Chang, J. Shen, Y. Zhang, C. Xue, Expression and characterization of a novel alginate-binding protein: a promising tool for investigating alginate. Carbohyd. Polym. 246, 116645 (2020).
[95] D. Al Sulaiman, J.Y. Chang, N.R. Bennett, H. Topouzi, C.A. Higgins et al., Hydrogel-coated microneedle arrays for minimally invasive sampling and sensing of specific circulating nucleic acids from skin interstitial fluid. ACS Nano 13, 9620–9628 (2019).
[96] C.V. Liew, L.W. Chan, A.L. Ching, P.W.S. Heng, Evaluation of sodium alginate as drug release modifier in matrix tablets. Int. J. Pharm. 309, 25–37 (2006).
[97] P. Agulhon, M. Robitzer, L. David, F. Quignard, Structural regime identification in ionotropic alginate gels: influence of the cation nature and alginate structure. Biomacromol 13, 215–220 (2012).
[98] Y. Zhang, G. Jiang, W. Yu, D. Liu, B. Xu, Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Mater. Sci. Eng. C 85, 18–26 (2018).
[99] Y.K. Demir, Z. Akan, O. Kerimoglu, Sodium alginate microneedle arrays mediate the transdermal delivery of bovine serum albumin. PLoS ONE 8, e63819 (2013).
[100] T. Tiraton, O. Suwantong, P. Chuysinuan, P. Ekabutr, P. Niamlang et al., Biodegradable microneedle fabricated from sodium alginate-gelatin for transdermal delivery of clindamycin. Mater. Today Commun. 32, 104158 (2022).
[101] Z. Zhou, M. Xing, S. Zhang, G. Yang, Y. Gao, Process optimization of Ca2+ cross-linked alginate-based swellable microneedles for enhanced transdermal permeability: more applicable to acidic drugs. Int. J. Pharm. 618, 121669 (2022).
[102] W. Yu, G. Jiang, Y. Zhang, D. Liu, B. Xu et al., Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater. Sci. Eng. C 80, 187–196 (2017).
[103] R. Jia, C. Cui, L. Gao, Y. Qin, N. Ji et al., A review of starch swelling behavior: its mechanism, determination methods, influencing factors, and influence on food quality. Carbohyd. Polym. 321, 121260 (2023).
[104] Y. Zhang, M. Wu, D. Tan, Q. Liu, R. Xia et al., A dissolving and glucose-responsive insulin-releasing microneedle patch for type 1 diabetes therapy. J. Mater. Chem. B 9, 648–657 (2021).
[105] R.S. Singh, N. Kaur, V. Rana, J.F. Kennedy, Pullulan: a novel molecule for biomedical applications. Carbohyd. Polym. 171, 102–121 (2017).
[106] S. Tiwari, R. Patil, S.K. Dubey, P. Bahadur, Derivatization approaches and applications of pullulan. Adv. Colloid Interfaces Sci. 269, 296–308 (2019).
[107] R.S. Singh, N. Kaur, M. Hassan, J.F. Kennedy, Pullulan in biomedical research and development-a review. Int. J. Biol. Macromol. 166, 694–706 (2021).
[108] L.K. Vora, A.J. Courtenay, I.A. Tekko, E. Larrañeta, R.F. Donnelly, Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. Int. J. Biol. Macromol. 146, 290–298 (2020).
[109] R.S. Singh, N. Kaur, D. Singh, S.S. Purewal, J.F. Kennedy, Pullulan in pharmaceutical and cosmeceutical formulations: a review. Int. J. Biol. Macromol. 231, 123353 (2023).
[110] D.F.S. Fonseca, P.C. Costa, I.F. Almeida, P. Dias-Pereira, I. Correia-Sá et al., Pullulan microneedle patches for the efficient transdermal administration of insulin envisioning diabetes treatment. Carbohyd. Polym. 241, 116314 (2020).
[111] W. Cheng, Y. Zhu, G. Jiang, K. Cao, S. Zeng et al., Sustainable cellulose and its derivatives for promising biomedical applications. Prog. Mater. Sci. 138, 101152 (2023).
[112] A.C.Q. Silva, B. Pereira, N.S. Lameirinhas, P.C. Costa, I.F. Almeida et al., Dissolvable carboxymethylcellulose microneedles for noninvasive and rapid administration of diclofenac sodium. Macromol. Biosci. 23, 2200323 (2023).
[113] A.A. Seetharam, H. Choudhry, M.A. Bakhrebah, W.H. Abdulaal, M.S. Gupta et al., Microneedles drug delivery systems for treatment of cancer: a recent update. Pharmaceutics 12, 1101 (2020).
[114] T. Aziz, A. Farid, F. Haq, M. Kiran, A. Ullah et al., A review on the modification of cellulose and its applications. Polymers 14, 3206 (2022).
[115] J.-Y. Kim, M.-R. Han, Y.-H. Kim, S.-W. Shin, S.-Y. Nam et al., Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur. J. Pharm. Biopharm. 105, 148–155 (2016).
[116] X. Lan, W. Zhu, X. Huang, Y. Yu, H. Xiao et al., Microneedles loaded with anti-PD-1–cisplatin nanoparticles for synergistic cancer immuno-chemotherapy. Nanoscale 12, 18885–18898 (2020).
[117] J.W. Lee, S.-O. Choi, E.I. Felner, M.R. Prausnitz, Dissolving microneedle patch for transdermal delivery of human growth hormone. Small 7, 531–539 (2011).
[118] Y.-H. Park, S.K. Ha, I. Choi, K.S. Kim, J. Park et al., Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery. Biotechnol. Bioeng. 21, 110–118 (2016).
[119] N. Qiang, Z. Liu, M. Lu, Y. Yang, F. Liao et al., Preparation and properties of polyvinylpyrrolidone/sodium carboxymethyl cellulose soluble microneedles. Materials 16, 3417 (2023).
[120] R. Sharma, K. Kuche, P. Thakor, V. Bhavana, S. Srivastava et al., Chondroitin sulfate: emerging biomaterial for biopharmaceutical purpose and tissue engineering. Carbohyd. Polym. 286, 119305 (2022).
[121] J. Yu, Y. Xia, H. Zhang, X. Pu, T. Gong et al., A semi-interpenetrating network-based microneedle for rapid local anesthesia. J. Drug Deliv. Sci. Technol. 78, 103984 (2022).
[122] M.M. Abdallah, N. Fernández, A.A. Matias, M. de Rosário Bronze, Hyaluronic acid and chondroitin sulfate from marine and terrestrial sources: extraction and purification methods. Carbohyd. Polym. 243, 116441 (2020).
[123] S. Liu, S. Zhang, Y. Duan, Y. Niu, H. Gu et al., Transcutaneous immunization of recombinant staphylococcal enterotoxin B protein using a dissolving microneedle provides potent protection against lethal enterotoxin challenge. Vaccine 37, 3810–3819 (2019).
[124] K. Fukushima, A. Ise, H. Morita, R. Hasegawa, Y. Ito et al., Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm. Res. 28, 7–21 (2011).
[125] D. Poirier, F. Renaud, V. Dewar, L. Strodiot, F. Wauters et al., Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable. Biomaterials 145, 256–265 (2017).
[126] K. Gou, Y. Li, Y. Qu, H. Li, R. Zeng, Advances and prospects of Bletilla striata polysaccharide as promising multifunctional biomedical materials. Mater. Des. 223, 111198 (2022).
[127] Z. Chen, L. Cheng, Y. He, X. Wei, Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: a review. Int. J. Biol. Macromol. 120, 2076–2085 (2018).
[128] L. Bai, T. Wang, Q. Deng, W. Zheng, X. Li et al., Dual properties of pharmacological activities and preparation excipient: Bletilla striata polysaccharides. Int. J. Biol. Macromol. (2023).
[129] L. Hu, Z. Liao, Q. Hu, K.G. Maffucci, Y. Qu, Novel Bletilla striata polysaccharide microneedles: fabrication, characterization, and in vitro transcutaneous drug delivery. Int. J. Biol. Macromol. 117, 928–936 (2018).
[130] M.K. Chan, Y. Yu, S. Wulamu, Y. Wang, Q. Wang et al., Structural analysis of water-soluble polysaccharides isolated from panax notoginseng. Int. J. Biol. Macromol. 155, 376–385 (2020).
[131] C. Wang, S. Liu, J. Xu, M. Gao, Y. Qu et al., Dissolvable microneedles based on panax notoginseng polysaccharide for transdermal drug delivery and skin dendritic cell activation. Carbohyd. Polym. 268, 118211 (2021).
[132] R.F. Donnelly, D.I. Morrow, T.R. Singh, K. Migalska, P.A. McCarron et al., Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev. Ind. Pharm. 35, 1242–1254 (2009).
[133] M.J. Mistilis, J.C. Joyce, E.S. Esser, I. Skountzou, R.W. Compans et al., Long-term stability of influenza vaccine in a dissolving microneedle patch. Drug Deliv. Transl. Res. 7, 195–205 (2017).
[134] L. Yenkoidiok-Douti, C. Barillas-Mury, C.M. Jewell, Design of dissolvable microneedles for delivery of a Pfs47-based malaria transmission-blocking vaccine. ACS Biomater. Sci. Eng. 7, 1854–1862 (2021).
[135] L.Y. Chu, L. Ye, K. Dong, R.W. Compans, C. Yang et al., Enhanced stability of inactivated influenza vaccine encapsulated in dissolving microneedle patches. Pharm. Res. 33, 868–878 (2016).
[136] D.D. Zhu, X.P. Zhang, H.L. Yu, R.X. Liu, C.B. Shen et al., Kinetic stability studies of HBV vaccine in a microneedle patch. Int. J. Pharm. 567, 118489 (2019).
[137] Y. Lee, W. Li, J. Tang, S.P. Schwendeman, M.R. Prausnitz, Immediate detachment of microneedles by interfacial fracture for sustained delivery of a contraceptive hormone in the skin. J. Control. Release 337, 676–685 (2021).
[138] A. Kumar, K.M. Rao, S.S. Han, Application of xanthan gum as polysaccharide in tissue engineering: a review. Carbohyd. Polym. 180, 128–144 (2018).
[139] P.S. Gils, D. Ray, P.K. Sahoo, Characteristics of xanthan gum-based biodegradable superporous hydrogel. Int. J. Biol. Macromol. 45, 364–371 (2009).
[140] P. Rakshit, T.K. Giri, K. Mukherjee, Research progresses on carboxymethyl xanthan gum: review of synthesis, physicochemical properties, rheological characterization and applications in drug delivery. Int. J. Biol. Macromol. 266, 131122 (2024).
[141] Y. Bachra, A. Grouli, F. Damiri, M. Talbi, M. Berrada, A novel superabsorbent polymer from crosslinked carboxymethyl tragacanth gum with glutaraldehyde: synthesis, characterization, and swelling properties. Int. J. Biomater. 2021, 5008833 (2021).
[142] H.-J. Choi, J.-M. Song, B.J. Bondy, R.W. Compans, S.-M. Kang et al., Effect of osmotic pressure on the stability of whole inactivated influenza vaccine for coating on microneedles. PLoS ONE 10, e0134431 (2015).
[143] H. Xiang, S. Xu, W. Zhang, Y. Li, Y. Zhou et al., Skin permeation of curcumin nanocrystals: effect of particle size, delivery vehicles, and permeation enhancer. Colloids Surf. B Biointerfaces 224, 113203 (2023).
[144] L.-D. Koh, Y. Cheng, C.-P. Teng, Y.-W. Khin, X.-J. Loh et al., Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 46, 86–110 (2015).
[145] E. Wenk, H.P. Merkle, L. Meinel, Silk fibroin as a vehicle for drug delivery applications. J. Control. Release 150, 128–141 (2011).
[146] J. Lee, E.H. Jang, J.H. Kim, S. Park, Y. Kang et al., Highly flexible and porous silk fibroin microneedle wraps for perivascular drug delivery. J. Control. Release 340, 125–135 (2021).
[147] M. Zhu, Y. Liu, F. Jiang, J. Cao, S.C. Kundu et al., Combined silk fibroin microneedles for insulin delivery. ACS Biomater. Sci. Eng. 6, 3422–3429 (2020).
[148] Y. Gao, M. Hou, R. Yang, L. Zhang, Z. Xu et al., Highly porous silk fibroin scaffold packed in PEGDA/sucrose microneedles for controllable transdermal drug delivery. Biomacromol 20, 1334–1345 (2019).
[149] Z. Yin, D. Kuang, S. Wang, Z. Zheng, V.K. Yadavalli et al., Swellable silk fibroin microneedles for transdermal drug delivery. Int. J. Biol. Macromol. 106, 48–56 (2018).
[150] M.R. Babu, S. Vishwas, R. Khursheed, V. Harish, A.B. Sravani et al., Unravelling the role of microneedles in drug delivery: principle, perspectives, and practices. Drug Deliv. Transl. Res. 14, 1393–1431 (2023).
[151] T. Zhu, W. Zhang, P. Jiang, S. Zhou, C. Wang et al., Progress in intradermal and transdermal gene therapy with microneedles. Pharm. Res. 39, 2475–2486 (2022).
[152] S. Khan, A. Hasan, F. Attar, M.M.N. Babadaei, H.A. Zeinabad et al., Diagnostic and drug release systems based on microneedle arrays in breast cancer therapy. J. Control. Release 338, 341–357 (2021).
[153] P. Rana, A.D. Dey, T. Agarwal, A. Kumar, Microneedles for delivery of anticancer therapeutics: recent trends and technologies. J. Nanopart. Res. 25, 154 (2023).
[154] J.Y. Park, Treatment of intraocular lymphoma using biodegradable microneedle implant. 139 (2007). https://europepmc.org/article/ETH/3418
[155] J. Jiang, H.S. Gill, D. Ghate, B.E. McCarey, S.R. Patel et al., Coated microneedles for drug delivery to the eye. Invest. Ophthalmol. Vis. Sci. 48, 4038–4043 (2007).
[156] Y.C. Kim, M.R. Prausnitz, H.F. Edelhauser, Targeted delivery of anti-glaucoma drugs to the supraciliary space using microneedles. Invest. Ophthalmol. Vis. Sci. 55, 5257–5257 (2014).
[157] H.B. Song, K.J. Lee, I.H. Seo, J.Y. Lee, S.-M. Lee et al., Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery. J. Control. Release 209, 272–279 (2015).
[158] R.R.S. Thakur, I.A. Tekko, F. Al-Shammari, A.A. Ali, H. McCarthy et al., Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery. Drug Deliv. Transl. Res. 6, 800–815 (2016).
[159] M. Amer, R.K. Chen, Self-adhesive microneedles with interlocking features for sustained ocular drug delivery. Macromol. Biosci. 20, 2000089 (2020).
[160] M. Cui, M. Zheng, C. Wiraja, S.W.T. Chew, A. Mishra et al., Ocular delivery of predatory bacteria with cryomicroneedles against eye infection. Adv. Sci. 8, e2102327 (2021).
[161] G. Roy, P. Garg, V.V.K. Venuganti, Microneedle scleral patch for minimally invasive delivery of triamcinolone to the posterior segment of eye. Int. J. Pharm. 612, 121305 (2022).
[162] Y. Fang, L. Zhuo, H. Yuan, H. Zhao, L. Zhang, Construction of graphene quantum dot-based dissolving microneedle patches for the treatment of bacterial keratitis. Int. J. Pharm. 639, 122945 (2023).
[163] X. Jiang, Y. Jin, Y. Zeng, P. Shi, W. Li, Self-implantable core–shell microneedle patch for long-acting treatment of keratitis via programmed drug release. Small (2024).
[164] T. Miyano, Y. Tobinaga, T. Kanno, Y. Matsuzaki, H. Takeda et al., Sugar micro needles as transdermic drug delivery system. Biomed. Microdevices 7, 185–188 (2005).
[165] Y. Wu, L.K. Vora, D. Mishra, M.F. Adrianto, S. Gade et al., Nanosuspension-loaded dissolving bilayer microneedles for hydrophobic drug delivery to the posterior segment of the eye. Biomater. Adv. 137, 212767 (2022).
[166] M.G. McGrath, S. Vucen, A. Vrdoljak, A. Kelly, C. O’Mahony et al., Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration. Eur. J. Pharm. Biopharm. 86, 200–211 (2014).
[167] B.-M. Lee, C. Lee, S.F. Lahiji, U.-W. Jung, G. Chung et al., Dissolving microneedles for rapid and painless local anesthesia. Pharmaceutics 12, 366 (2020).
[168] W. Zhu, W. Pewin, C. Wang, Y. Luo, G.X. Gonzalez et al., A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines. J. Control. Release 261, 1–9 (2017).
[169] N.W. Kim, S.-Y. Kim, J.E. Lee, Y. Yin, J.H. Lee et al., Enhanced cancer vaccination by in situ nanomicelle-generating dissolving microneedles. ACS Nano 12, 9702–9713 (2018).
[170] L.E. Moore, S. Vucen, A.C. Moore, Trends in drug-and vaccine-based dissolvable microneedle materials and methods of fabrication. Eur. J. Pharm. Biopharm. 173, 54–72 (2022).
[171] C. Kuwentrai, J. Yu, L. Rong, B.Z. Zhang, Y.F. Hu et al., Intradermal delivery of receptor-binding domain of SARS-CoV-2 spike protein with dissolvable microneedles to induce humoral and cellular responses in mice. Bioeng. Transl. Med. 6, e10202 (2021).
[172] A. Donadei, H. Kraan, O. Ophorst, O. Flynn, C. O’Mahony et al., Skin delivery of trivalent sabin inactivated poliovirus vaccine using dissolvable microneedle patches induces neutralizing antibodies. J. Control. Release 311, 96–103 (2019).
[173] M.-C. Chen, K.-Y. Lai, M.-H. Ling, C.-W. Lin, Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomater. 65, 66–75 (2018).
[174] E. Kim, G. Erdos, S. Huang, T.W. Kenniston, S.C. Balmert et al., Microneedle array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EBioMedicine 55, 102743 (2020).
[175] P.R. Yadav, M.N. Munni, L. Campbell, G. Mostofa, L. Dobson et al., Translation of polymeric microneedles for treatment of human diseases: recent trends, progress, and challenges. Pharmaceutics 13, 1132 (2021).
[176] R. Jamaledin, C. Di Natale, V. Onesto, Z.B. Taraghdari, E.N. Zare et al., Progress in microneedle-mediated protein delivery. J. Clin. Med. 9, 542 (2020).
[177] D. Jakka, A.V. Matadh, V.K. Shankar, H. Shivakumar, S.N. Murthy, Polymer coated polymeric (PCP) microneedles for controlled delivery of drugs (dermal and intravitreal). J. Pharm. Sci. 111, 2867–2878 (2022).
[178] H. Chang, M. Zheng, X. Yu, A. Than, R.Z. Seeni et al., A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv. Mater. 29, 1702243 (2017).
[179] H.S. Gill, M.R. Prausnitz, Coated microneedles for transdermal delivery. J. Control. Release 117, 227–237 (2007).
[180] W. Li, G. Hua, J. Cai, Y. Zhou, X. Zhou et al., Multi-stimulus responsive multilayer coating for treatment of device-associated infections. J. Funct. Biomater. 13, 24 (2022).
[181] Y. Chen, B.Z. Chen, Q.L. Wang, X. Jin, X.D. Guo, Fabrication of coated polymer microneedles for transdermal drug delivery. J. Control. Release 265, 14–21 (2017).
[182] S. Li, W. Li, M. Prausnitz, Individually coated microneedles for co-delivery of multiple compounds with different properties. Drug Deliv. Transl. Res. 8, 1043–1052 (2018).
[183] R.H. Chong, E. Gonzalez-Gonzalez, M.F. Lara, T.J. Speaker, C.H. Contag et al., Gene silencing following siRNA delivery to skin via coated steel microneedles: in vitro and in vivo proof-of-concept. J. Control. Release 166, 211–219 (2013).
[184] Y. Shin, J. Kim, J.H. Seok, H. Park, H.-R. Cha et al., Development of the H3N2 influenza microneedle vaccine for cross-protection against antigenic variants. Sci. Rep. 12, 12189 (2022).
[185] J.G. Turner, L.R. White, P. Estrela, H.S. Leese, Hydrogel-forming microneedles: current advancements and future trends. Macromol. Biosci. 21, 2000307 (2021).
[186] M. Kim, B. Jung, J.-H. Park, Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials 33, 668–678 (2012).
[187] H. Dawud, N. Edelstein-Pardo, K. Mulamukkil, R.J. Amir, A. Abu Ammar, Hydrogel microneedles with programmed mesophase transitions for controlled drug delivery. ACS Appl. Bio Mater. 7, 1682–1693 (2024).
[188] Z. Li, P. Zhao, Z. Ling, Y. Zheng, F. Qu et al., An ultraswelling microneedle device for facile and efficient drug loading and transdermal delivery. Adv. Healthc. Mater. 13, 2302406 (2024).
[189] R.F. Donnelly, M.T. McCrudden, A. Zaid Alkilani, E. Larrañeta, E. McAlister et al., Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS ONE 9, e111547 (2014).
[190] J. Zhu, X. Zhou, H.J. Kim, M. Qu, X. Jiang et al., Gelatin methacryloyl microneedle patches for minimally invasive extraction of skin interstitial fluid. Small 16, 1905910 (2020).
[191] X. Hong, Z. Wu, L. Chen, F. Wu, L. Wei et al., Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett. 6, 191–199 (2014).
[192] E. Caffarel-Salvador, A.J. Brady, E. Eltayib, T. Meng, A. Alonso-Vicente et al., Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. PLoS ONE 10, e0145644 (2015).
[193] M.T. Hoang, K.B. Ita, D.A. Bair, Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics 7, 379–396 (2015).
[194] F.K. Aldawood, A. Andar, S. Desai, A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers 13, 2815 (2021).
[195] C.E. Umeyor, V. Shelke, A. Pol, P. Kolekar, S. Jadhav et al., Biomimetic microneedles: Exploring the recent advances on a microfabricated system for precision delivery of drugs, peptides, and proteins. Future J. Pharm. Sci. 9, 103 (2023).
[196] S. Pradeep Narayanan, S. Raghavan, Solid silicon microneedles for drug delivery applications. Int. J. Adv. Manuf. Technol. 93, 407–422 (2017).
[197] W. Li, Y.M. Zhang, J. Chen, Design, fabrication and characterization of in-plane titanium microneedles for transdermal drug delivery. Key Eng. Mater. 483, 532–536 (2011).
[198] Z. Ding, F.J. Verbaan, M. Bivas-Benita, L. Bungener, A. Huckriede et al., Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J. Control. Release 136, 71–78 (2009).
[199] Q.Y. Li, J.N. Zhang, B.Z. Chen, Q.L. Wang, X.D. Guo, A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Adv. 7, 15408–15415 (2017).
[200] W. Shu, H. Heimark, N. Bertollo, D.J. Tobin, E.D. O’Cearbhaill et al., Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method. Acta Biomater. 135, 403–413 (2021).
[201] N.N. Ahmad, N.N.N. Ghazali, Y.H. Wong, Mechanical and fluidic analysis of hollow side-open and outer-grooved design of microneedles. Mater. Today Commun. 29, 102940 (2021).
[202] L. Huang, H. Fang, T. Zhang, B. Hu, S. Liu et al., Drug-loaded balloon with built-in nir controlled tip-separable microneedles for long-effective arteriosclerosis treatment. Bioact. Mater. 23, 526–538 (2023).
[203] E. Larrañeta, R.E. Lutton, A.D. Woolfson, R.F. Donnelly, Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater. Sci. Eng. R. Rep. 104, 1–32 (2016).
[204] S.R. Patel, A.S. Lin, H.F. Edelhauser, M.R. Prausnitz, Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm. Res. 28, 166–176 (2011).
[205] K. van der Maaden, J. Heuts, M. Camps, M. Pontier, A.T. van Scheltinga et al., Hollow microneedle-mediated micro-injections of a liposomal HPV E743–63 synthetic long peptide vaccine for efficient induction of cytotoxic and t-helper responses. J. Control. Release 269, 347–354 (2018).
[206] M. Fratus, M.A. Alam, Theory of nanostructured sensors integrated in/on microneedles for diagnostics and therapy. Biosens. Bioelectron. 255, 116238 (2024).
[207] X. Zhang, G. Chen, L. Cai, Y. Wang, L. Sun et al., Bioinspired pagoda-like microneedle patches with strong fixation and hemostasis capabilities. Chem. Eng. J. 414, 128905 (2021).
[208] W.-G. Bae, H. Ko, J.-Y. So, H. Yi, C.-H. Lee et al., Snake fang–inspired stamping patch for transdermal delivery of liquid formulations. Sci. Transl. Med. 11, eaaw3329 (2019).
[209] W.K. Cho, J.A. Ankrum, D. Guo, S.A. Chester, S.Y. Yang et al., Microstructured barbs on the North American porcupine quill enable easy tissue penetration and difficult removal. Proc. Natl. Acad. Sci. U.S.A. 109, 21289–21294 (2012).
[210] X. Zhang, G. Chen, L. Sun, F. Ye, X. Shen et al., Claw-inspired microneedle patches with liquid metal encapsulation for accelerating incisional wound healing. Chem. Eng. J. 406, 126741 (2021).
[211] Y. Deng, C. Yang, Y. Zhu, W. Liu, H. Li et al., Lamprey-teeth-inspired oriented antibacterial sericin microneedles for infected wound healing improvement. Nano Lett. 22, 2702–2711 (2022).
[212] M. Guo, Y. Wang, B. Gao, B. He, Shark tooth-inspired microneedle dressing for intelligent wound management. ACS Nano 15, 15316–15327 (2021).
[213] Z. Zhu, J. Wang, X. Pei, J. Chen, X. Wei et al., Blue-ringed octopus-inspired microneedle patch for robust tissue surface adhesion and active injection drug delivery. Sci. Adv. 9, eadh2213 (2023).
[214] K. Moussi, A.A. Haneef, R.A. Alsiary, E.M. Diallo, M.A. Boone et al., A microneedles balloon catheter for endovascular drug delivery. Adv. Mater. Technol. 6, 2100037 (2021).
[215] K. Lee, J. Lee, S.G. Lee, S. Park, J.-J. Lee et al., Microneedle drug eluting balloon for enhanced drug delivery to vascular tissue. J. Control. Release 321, 174–183 (2020).
[216] J. Luo, J.-K. Wang, B.-L. Song, Lowering low-density lipoprotein cholesterol: from mechanisms to therapies. Life Metab. 1, 25–38 (2022).
[217] X. Zhang, Y. Cheng, R. Liu, Y. Zhao, Globefish-inspired balloon catheter with intelligent microneedle coating for endovascular drug delivery. Adv. Sci. 9, 2204497 (2022).
[218] J.M. Loh, Y.J.L. Lim, J.T. Tay, H.M. Cheng, H.L. Tey et al., Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact. Mater. 32, 222–241 (2024).
[219] C. Yeung, S. Chen, B. King, H. Lin, K. King et al., A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics 13, 064125 (2019).
[220] P.R. Miller, S.D. Gittard, T.L. Edwards, D.M. Lopez, X. Xiao et al., Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics 5, 013415 (2011).
[221] L. Zheng, D. Zhu, Y. Xiao, X. Zheng, P. Chen, Microneedle coupled epidermal sensor for multiplexed electrochemical detection of kidney disease biomarkers. Biosens. Bioelectron. 237, 115506 (2023).
[222] L. Lin, Y. Wang, M. Cai, X. Jiang, Y. Hu et al., Multimicrochannel microneedle microporation platform for enhanced intracellular drug delivery. Adv. Funct. Mater. 32, 2109187 (2022).
[223] C. Farias, R. Lyman, C. Hemingway, H. Chau, A. Mahacek et al., Three-dimensional (3D) printed microneedles for microencapsulated cell extrusion. Bioengineering 5, 59 (2018).
[224] S. Wang, M. Zhao, Y. Yan, P. Li, W. Huang, Flexible monitoring, diagnosis, and therapy by microneedles with versatile materials and devices toward multifunction scope. Research 6, 0128 (2023).
[225] M. Tavafoghi, F. Nasrollahi, S. Karamikamkar, M. Mahmoodi, S. Nadine et al., Advances and challenges in developing smart, multifunctional microneedles for biomedical applications. Biotechnol. Bioeng. 119, 2715–2730 (2022).
[226] Y. Zhou, B. Niu, Y. Zhao, J. Fu, T. Wen et al., Multifunctional nanoreactors-integrated microneedles for cascade reaction-enhanced cancer therapy. J. Control. Release 339, 335–349 (2021).
[227] A. Tucak, M. Sirbubalo, L. Hindija, O. Rahić, J. Hadžiabdić et al., Microneedles: characteristics, materials, production methods and commercial development. Micromachines 11, 961 (2020).
[228] Y. Su, V.L. Mainardi, H. Wang, A. McCarthy, Y.S. Zhang et al., Dissolvable microneedles coupled with nanofiber dressings eradicate biofilms via effectively delivering a database-designed antimicrobial peptide. ACS Nano 14, 11775–11786 (2020).
[229] H. Yang, S. Kim, I. Huh, S. Kim, S.F. Lahiji et al., Rapid implantation of dissolving microneedles on an electrospun pillar array. Biomaterials 64, 70–77 (2015).
[230] J.D. Kim, M. Kim, H. Yang, K. Lee, H. Jung, Droplet-born air blowing: novel dissolving microneedle fabrication. J. Control. Release 170, 430–436 (2013).
[231] K. Lee, C.Y. Lee, H. Jung, Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 32, 3134–3140 (2011).
[232] S. Fakhraei Lahiji, Y. Kim, G. Kang, S. Kim, S. Lee et al., Tissue interlocking dissolving microneedles for accurate and efficient transdermal delivery of biomolecules. Sci. Rep. 9, 7886 (2019).
[233] Q.L. Wang, D.D. Zhu, Y. Chen, X.D. Guo, A fabrication method of microneedle molds with controlled microstructures. Mater. Sci. Eng. C 65, 135–142 (2016).
[234] P. Singh, A. Carrier, Y. Chen, S. Lin, J. Wang et al., Polymeric microneedles for controlled transdermal drug delivery. J. Control. Release 315, 97–113 (2019).
[235] K. Badnikar, S.N. Jayadevi, S. Pahal, S. Sripada, M.M. Nayak et al., Generic molding platform for simple, low-cost fabrication of polymeric microneedles. Macromol. Mater. Eng. 305, 2000072 (2020).
[236] M.J. Kim, S.C. Park, S.-O. Choi, Dual-nozzle spray deposition process for improving the stability of proteins in polymer microneedles. RSC Adv. 7, 55350–55359 (2017).
[237] B. Bediz, E. Korkmaz, R. Khilwani, C. Donahue, G. Erdos et al., Dissolvable microneedle arrays for intradermal delivery of biologics: fabrication and application. Pharm. Res. 31, 117–135 (2014).
[238] J.W. Lee, J.-H. Park, M.R. Prausnitz, Dissolving microneedles for transdermal drug delivery. Biomaterials 29, 2113–2124 (2008).
[239] S.P. Sullivan, N. Murthy, M.R. Prausnitz, Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv. Mater. 20, 933–938 (2008).
[240] S.C. Park, M.J. Kim, S.-K. Baek, J.-H. Park, S.-O. Choi, Spray-formed layered polymer microneedles for controlled biphasic drug delivery. Polymers 11, 369 (2019).
[241] K. Valachová, M.A. El Meligy, L. Šoltés, Hyaluronic acid and chitosan-based electrospun wound dressings: problems and solutions. Int. J. Biol. Macromol. 206, 74–91 (2022).
[242] R. Augustine, S.R.U. Rehman, R. Ahmed, A.A. Zahid, M. Sharifi et al., Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int. J. Biol. Macromol. 156, 153–170 (2020).
[243] B.P. Antunes, A.F. Moreira, V.M. Gaspar, I.J. Correia, Chitosan/arginine–chitosan polymer blends for assembly of nanofibrous membranes for wound regeneration. Carbohyd. Polym. 130, 104–112 (2015).
[244] Y. Wang, P. Guan, R. Tan, Z. Shi, Q. Li et al., Fiber-reinforced silk microneedle patches for improved tissue adhesion in treating diabetic wound infections. Adv. Fiber Mater. (2024).
[245] L. Fu, Q. Feng, Y. Chen, J. Fu, X. Zhou et al., Nanofibers for the immunoregulation in biomedical applications. Adv. Fiber Mater. 4, 1334–1356 (2022).
[246] H. He, M. Wu, J. Zhu, Y. Yang, R. Ge et al., Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Adv. Fiber Mater. 4, 305–317 (2022).
[247] Y. Long, L. Li, T. Xu, X. Wu, Y. Gao et al., Hedgehog artificial macrophage with atomic-catalytic centers to combat drug-resistant bacteria. Nat. Commun. 12, 6143 (2021).
[248] S. Xiao, L. Xie, Y. Gao, M. Wang, W. Geng et al., Artificial phages with biocatalytic spikes for synergistically eradicating antibiotic-resistant biofilms. Adv. Mater. (2024).
[249] H.K. Azar, M.H. Monfared, A.A. Seraji, S. Nazarnezhad, E. Nasiri et al., Integration of polysaccharide electrospun nanofibers with microneedle arrays promotes wound regeneration: a review. Int. J. Biol. Macromol. 258, 128482 (2023).
[250] S. Bhatnagar, P.R. Gadeela, P. Thathireddy, V.V.K. Venuganti, Microneedle-based drug delivery: materials of construction. J. Chem. Sci. 131, 1–28 (2019).
[251] M. Ali, S. Namjoshi, H.A. Benson, Y. Mohammed, T. Kumeria, Dissolvable polymer microneedles for drug delivery and diagnostics. J. Control. Release 347, 561–589 (2022).
[252] S.N. Economidou, C.P.P. Pere, A. Reid, M.J. Uddin, J.F. Windmill et al., 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater. Sci. Eng. C 102, 743–755 (2019).
[253] K. Lee, H.C. Lee, D.S. Lee, H. Jung, Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv. Mater. 22, 483–486 (2010).
[254] R. Vecchione, S. Coppola, E. Esposito, C. Casale, V. Vespini et al., Electro-drawn drug-loaded biodegradable polymer microneedles as a viable route to hypodermic injection. Adv. Funct. Mater. 24, 3515–3523 (2014).
[255] Z. Chen, L. Ren, J. Li, L. Yao, Y. Chen et al., Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 65, 283–291 (2018).
[256] F. Ruggiero, R. Vecchione, S. Bhowmick, G. Coppola, S. Coppola et al., Electro-drawn polymer microneedle arrays with controlled shape and dimension. Sens. Actuators B Chem. 255, 1553–1560 (2018).
[257] H. Yang, S. Kim, G. Kang, S.F. Lahiji, M. Jang et al., Centrifugal lithography: self-shaping of polymer microstructures encapsulating biopharmaceutics by centrifuging polymer drops. Adv. Healthc. Mater. 6, 1700326 (2017).
[258] I. Huh, S. Kim, H. Yang, M. Jang, G. Kang et al., Effects of two droplet-based dissolving microneedle manufacturing methods on the activity of encapsulated epidermal growth factor and ascorbic acid. Eur. J. Pharm. Sci. 114, 285–292 (2018).
[259] C. Lee, H. Kim, S. Kim, S.F. Lahiji, N.Y. Ha et al., Comparative study of two droplet-based dissolving microneedle fabrication methods for skin vaccination. Adv. Healthc. Mater. 7, 1701381 (2018).
[260] M. Olowe, S.K. Parupelli, S. Desai, A review of 3D-printing of microneedles. Pharmaceutics 14, 2693 (2022).
[261] M.A. Luzuriaga, D.R. Berry, J.C. Reagan, R.A. Smaldone, J.J. Gassensmith, Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip 18, 1223–1230 (2018).
[262] L. Wu, J. Park, Y. Kamaki, B. Kim, Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles. Microsyst. Nanoeng. 7, 58 (2021).
[263] U. Detamornrat, E. McAlister, A.R. Hutton, E. Larrañeta, R.F. Donnelly, The role of 3D printing technology in microengineering of microneedles. Small 18, 2106392 (2022).
[264] R. Wichniarek, W. Kuczko, D. Tomczak, A. Nowicka, M. Wojtyłko et al., Geometrical accuracy and strength of micro-needles made of polylactide by fused filament fabrication method. Adv. Colloid Interface Sci. 17, 116–126 (2023).
[265] C.P.P. Pere, S.N. Economidou, G. Lall, C. Ziraud, J.S. Boateng et al., 3D printed microneedles for insulin skin delivery. Int. J. Pharm. 544, 425–432 (2018).
[266] K.J. Krieger, N. Bertollo, M. Dangol, J.T. Sheridan, M.M. Lowery et al., Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst. Nanoeng. 5, 42 (2019).
[267] S. Choo, S. Jin, J. Jung, Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics 14, 766 (2022).
[268] A. Bertino, L. Mazzeo, G. Caputo, S. Sau, A. Giaconia et al., Continuous multiphase bunsen reactor of iodine–sulfur thermochemical water splitting cycles for hydrogen production: experimental, modelling and design insights. Chem. Eng. J. 481, 148415 (2024).
[269] D. Shin, J. Hyun, Silk fibroin microneedles fabricated by digital light processing 3D printing. J. Ind. Eng. Chem. 95, 126–133 (2021).
[270] A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro-Riviere, A. Doraiswamy et al., Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. Int. J. Appl. Ceram. Technol. 4, 22–29 (2007).
[271] D. Han, R.S. Morde, S. Mariani, A.A. La Mattina, E. Vignali et al., 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv. Funct. Mater. 30, 1909197 (2020).
[272] R. Parhi, Recent advances in 3D printed microneedles and their skin delivery application in the treatment of various diseases. J. Drug Deliv. Sci. Technol. 84, 104395 (2023).
[273] H. Ako, J. O’Mahony, H. Hughes, P. McLoughlin, N.J. O’Reilly, A novel approach to the manufacture of dissolving microneedles arrays using aerosol jet printing. Appl. Mater. Today 35, 101958 (2023).
[274] Y. Li, K. Chen, Y. Pang, J. Zhang, M. Wu et al., Multifunctional microneedle patches via direct ink drawing of nanocomposite inks for personalized transdermal drug delivery. ACS Nano 17, 19925–19937 (2023).
[275] R. Li, L. Zhang, X. Jiang, L. Li, S. Wu et al., 3D-printed microneedle arrays for drug delivery. J. Control. Release 350, 933–948 (2022).
[276] J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson et al., Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).
[277] S.S. Al-Nimry, R.M. Daghmash, Three dimensional printing and its applications focusing on microneedles for drug delivery. Pharmaceutics 15, 1597 (2023).
[278] S.N. Economidou, C.P. Pissinato Pere, M. Okereke, D. Douroumis, Optimisation of design and manufacturing parameters of 3D printed solid microneedles for improved strength, sharpness, and drug delivery. Micromachines 12, 117 (2021).
[279] S. Feng, J. Delannoy, A. Malod, H. Zheng, D. Quéré et al., Tip-induced flipping of droplets on Janus pillars: from local reconfiguration to global transport. Sci. Adv. 6, eabb4540 (2020).
[280] Y. Zambito, G. Di Colo, Polysaccharides as excipients for ocular topical formulations, Biomaterials Applications for Nanomedicine, (2011), pp. 253–280.
[281] R.V. Moiseev, P.W. Morrison, F. Steele, V.V. Khutoryanskiy, Penetration enhancers in ocular drug delivery. Pharmaceutics 11, 321 (2019).
[282] R.N. Van Gelder, M.F. Chiang, M.A. Dyer, T.N. Greenwell, L.A. Levin et al., Regenerative and restorative medicine for eye disease. Nat. Med. 28, 1149–1156 (2022).
[283] Y.-Y. Leong, L. Tong, Barrier function in the ocular surface: from conventional paradigms to new opportunities. Ocul. Surf. 13, 103–109 (2015).
[284] R.D. Bachu, P. Chowdhury, Z.H. Al-Saedi, P.K. Karla, S.H. Boddu, Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 10, 28 (2018).
[285] E. Mott, H. Kesten, Eye hypersensitivity elicited by monilia psilosis polysaccharide. Proc. Soc. Exp. Biol. Med. 28, 320–321 (1930).
[286] M. Rolando, C. Valente, Establishing the tolerability and performance of tamarind seed polysaccharide (TSP) in treating dry eye syndrome: results of a clinical study. BMC Ophthalmol. 7, 5 (2007).
[287] E. Mott, H.D. Kesten, Hypersensitiveness to soluble specific substances from yeast-like fungi : Ii. eye hypersensitivity. J. Exp. Med. 53, 815–819 (1931).
[288] X.-G. Wu, M. Xin, H. Chen, L.-N. Yang, H.-R. Jiang, Novel mucoadhesive polysaccharide isolated from Bletilla striata improves the intraocular penetration and efficacy of levofloxacin in the topical treatment of experimental bacterial keratitis. J. Pharm. Pharmacol. 62, 1152–1157 (2010).
[289] E. Akbari, R. Imani, P. Shokrollahi, R. Jarchizadeh, Hydrogel-based formulations for drug delivery to the anterior segment of the eye. J. Drug Deliv. Sci. Technol. 81, 104250 (2023).
[290] H. Yu, W. Wu, X. Lin, Y. Feng, Polysaccharide-based nanomaterials for ocular drug delivery: a perspective. Front. Bioeng. Biotechnol. 8, 601246 (2020).
[291] J. Necas, L. Bartosikova, P. Brauner, J. Kolar, Hyaluronic acid (hyaluronan): a review. Vet. Med. 53, 397–411 (2008).
[292] I. Hargittai, M. Hargittai, Molecular structure of hyaluronan: an introduction. Struct. Chem. 19, 697–717 (2008).
[293] X. Zhang, D. Wei, Y. Xu, Q. Zhu, Hyaluronic acid in ocular drug delivery. Carbohyd. Polym. 264, 118006 (2021).
[294] W.-H. Chang, P.-Y. Liu, M.-H. Lin, C.-J. Lu, H.-Y. Chou et al., Applications of hyaluronic acid in ophthalmology and contact lenses. Molecules 26, 2485 (2021).
[295] J. Pinto-Fraga, A. López-de la Rosa, F.B. Arauzo, R.U. Rodríguez, M.J. González-García, Efficacy and safety of 0.2% hyaluronic acid in the management of dry eye disease. Eye Contact Lens 43, 57–63 (2017).
[296] D. Lee, Q. Lu, S.D. Sommerfeld, A. Chan, N.G. Menon et al., Targeted delivery of hyaluronic acid to the ocular surface by a polymer-peptide conjugate system for dry eye disease. Acta Biomater. 55, 163–171 (2017).
[297] O. Galvin, A. Srivastava, O. Carroll, R. Kulkarni, S. Dykes et al., A sustained release formulation of novel quininib-hyaluronan microneedles inhibits angiogenesis and retinal vascular permeability in vivo. J. Control. Release 233, 198–207 (2016).
[298] B. Gupta, V. Mishra, S. Gharat, M. Momin, A. Omri, Cellulosic polymers for enhancing drug bioavailability in ocular drug delivery systems. Pharmaceuticals 14, 1201 (2021).
[299] M. Patchan, J. Graham, Z. Xia, J. Maranchi, R. McCally et al., Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Mater. Sci. Eng. C 33, 3069–3076 (2013).
[300] Y. Dong, L.I. Mosquera-Giraldo, L.S. Taylor, K.J. Edgar, Amphiphilic cellulose ethers designed for amorphous solid dispersion via olefin cross-metathesis. Biomacromol 17, 454–465 (2016).
[301] T. Irimia, M.V. Ghica, L. Popa, V. Anuţa, A.-L. Arsene et al., Strategies for improving ocular drug bioavailability and corneal wound healing with chitosan-based delivery systems. Polymers 10, 1221 (2018).
[302] L.M. Hemmingsen, N. Škalko-Basnet, M.W. Jøraholmen, The expanded role of chitosan in localized antimicrobial therapy. Mar. Drugs 19, 697 (2021).
[303] A. Karava, M. Lazaridou, S. Nanaki, G. Michailidou, E. Christodoulou et al., Chitosan derivatives with mucoadhesive and antimicrobial properties for simultaneous nanoencapsulation and extended ocular release formulations of dexamethasone and chloramphenicol drugs. Pharmaceutics 12, 594 (2020).
[304] N. Dubashynskaya, D. Poshina, S. Raik, A. Urtti, Y.A. Skorik, Polysaccharides in ocular drug delivery. Pharmaceutics 12, 22 (2019).
[305] M. Kouchak, M. Mahmoodzadeh, F. Farrahi, Designing of a pH-triggered Carbopol®/HPMC in situ gel for ocular delivery of dorzolamide HCl: in vitro, in vivo, and ex vivo evaluation. AAPS Pharm. Sci. Tech. 20, 1–8 (2019).
[306] X. Zhang, N. Liu, M. Zhou, T. Zhang, T. Tian et al., DNA nanorobot delivers antisense oligonucleotides silencing c-Met gene expression for cancer therapy. J. Biomed. Nanotechnol. 15, 1948–1959 (2019).
[307] X. Wang, Q. Li, Z. Zhao, L. Yu, S. Wang et al., Dual-functional artificial peroxidases with ferriporphyrin centers for amplifying tumor immunotherapies via immunogenic cell death. Adv. Funct. Mater. 34, 2313143 (2024).
[308] D. Yang, M. Yuan, J. Huang, X. Xiang, H. Pang et al., Conjugated network supporting highly surface-exposed Ru site-based artificial antioxidase for efficiently modulating microenvironment and alleviating solar dermatitis. ACS Nano 18, 3424–3437 (2024).
[309] Y. Huang, X. Liu, J. Zhu, Z. Chen, L. Yu et al., Enzyme core spherical nucleic acid that enables enhanced cuproptosis and antitumor immune response through alleviating tumor hypoxia. J. Am. Chem. Soc. 146, 13805–13816 (2024).
[310] H. Huang, W. Geng, X. Wu, Y. Zhang, L. Xie et al., Spiky artificial peroxidases with V−O−Fe pair sites for combating antibiotic-resistant pathogens. Angew. Chem. Int. Ed. 63, e202310811 (2024).
[311] X. Qin, N. Li, M. Zhang, S. Lin, J. Zhu et al., Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. Nanoscale 11, 20667–20675 (2019).
[312] X. Liu, F. Li, Z. Dong, C. Gu, D. Mao et al., Metal-polyDNA nanoparticles reconstruct osteoporotic microenvironment for enhanced osteoporosis treatment. Sci. Adv. 9, eadf329 (2023).
[313] J.H. Jung, B. Chiang, H.E. Grossniklaus, M.R. Prausnitz, Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle. J. Control. Release 277, 14–22 (2018).
[314] Y. Lee, S. Park, S.I. Kim, K. Lee, W. Ryu, Rapidly detachable microneedles using porous water-soluble layer for ocular drug delivery. Adv. Mater. Technol. 5, 1901145 (2020).
[315] T. Zhong, H. Yi, J. Gou, J. Li, M. Liu et al., A wireless battery-free eye modulation patch for high myopia therapy. Nat. Commun. 15, 1766 (2024).
[316] S.H. Park, D.H. Jo, C.S. Cho, K. Lee, J.H. Kim et al., Depthwise-controlled scleral insertion of microneedles for drug delivery to the back of the eye. Eur. J. Pharm. Biopharm. 133, 31–41 (2018).
[317] K. Lee, H.B. Song, W. Cho, J.H. Kim, J.H. Kim et al., Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery. Acta Biomater. 80, 48–57 (2018).
[318] S. Park, K. Lee, H. Kang, Y. Lee, J. Lee et al., Single administration of a biodegradable, separable microneedle can substitute for repeated application of eyedrops in the treatment of infectious keratitis. Adv. Healthc. Mater. 10, 2002287 (2021).
[319] W. Park, V.P. Nguyen, Y. Jeon, B. Kim, Y. Li et al., Biodegradable silicon nanoneedles for ocular drug delivery. Sci. Adv. 8, eabn1772 (2022).
[320] T.Y. Kim, G.-H. Lee, J. Mun, S. Cheong, I. Choi et al., Smart contact lens systems for ocular drug delivery and therapy. Adv. Drug Deliv. Rev. 196, 114817 (2023).
[321] S.K. Gade, J. Nirmal, P. Garg, V.V.K. Venuganti, Corneal delivery of moxifloxacin and dexamethasone combination using drug-eluting mucoadhesive contact lens to treat ocular infections. Int. J. Pharm. 591, 120023 (2020).
[322] D. Datta, G. Roy, P. Garg, V.V.K. Venuganti, Ocular delivery of cyclosporine a using dissolvable microneedle contact lens. J. Drug Deliv. Sci. Technol. 70, 103211 (2022).