• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0217003 (2023)
Ziqi Han1, Qiaohong Liu2,*, Chen Ling2, Jiawei Liu1, and Cunjue Liu1
Author Affiliations
  • 1College of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
  • show less
    DOI: 10.3788/LOP212665 Cite this Article Set citation alerts
    Ziqi Han, Qiaohong Liu, Chen Ling, Jiawei Liu, Cunjue Liu. Polyp Segmentation Method Combining HarDNet and Reverse Attention[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0217003 Copy Citation Text show less
    HraNet model structure
    Fig. 1. HraNet model structure
    Structure comparison diagram of DenseNet and HarDNet
    Fig. 2. Structure comparison diagram of DenseNet and HarDNet
    Reverse attention block
    Fig. 3. Reverse attention block
    Receptive field block
    Fig. 4. Receptive field block
    Comparison of segmentation results of colonic polyps
    Fig. 5. Comparison of segmentation results of colonic polyps
    ParametermStride 2Stride 4Stride 8Stride 16Stride 32
    Value1.73×3,32,stride is 28(HDB),k=14,t=12816(HDB),k=16,t=25616(HDB),k=40,t=6404(HDB),k=160,t=1024
    3×3,6416(HDB),k=20,t=320
    Table 1. Detailed implementation parameters of HarDNet68
    DatasetMethodmDicemIoUFβwSαEϕmaxMAE
    Kvasir SEGUNet0.8180.7460.7940.8580.8930.055
    UNet++0.8210.7430.8080.8620.9100.048
    SFA0.7230.6110.6700.7820.8490.075
    PraNet0.8980.8400.8850.9150.9480.030
    HraNet0.9010.8450.8900.9170.9440.027
    CVC ClinicDBUNet0.8230.7550.8110.8890.9540.019
    UNet++0.7940.7290.7850.8730.9310.022
    SFA0.7000.6070.6470.7930.8850.042
    PraNet0.8990.8490.8960.9360.9790.009
    HraNet0.9300.8790.9280.9490.9800.008
    Table 2. Comparison of segmentation effects of different methods on Kvasir SEG and CVC ClinicDB datasets
    DatasetMethodmDicemIoUFβwSαEϕmaxMAE
    CVC ColonDBUNet0.5120.4440.4980.7120.7760.061
    UNet++0.4830.4100.4670.6910.7600.064
    SFA0.4690.3470.3790.6340.7650.094
    PraNet0.7090.6400.6960.8190.8690.045
    HraNet0.7290.6600.7200.8300.8580.038
    ETISLarib Polyp DBUNet0.3980.3350.3660.6840.7400.036
    UNet++0.4010.3440.3900.6830.7760.035
    SFA0.2970.2170.2310.5570.6330.109
    PraNet0.6280.5670.6000.7940.8410.031
    HraNet0.6500.5810.6170.7970.8270.035
    EndoseceUNet0.7100.6270.6840.8430.8760.022
    UNet++0.7070.6240.6870.8390.8980.018
    SFA0.4670.3290.3410.6400.8170.065
    PraNet0.8710.7970.8430.9250.9720.010
    HraNet0.8920.8240.8750.9370.9640.007
    Table 3. Generalization capability test results
    DatasetMethodEpochTraining /minInference /(frame·s-1mDicemIoU
    CVC ClinicDBUNet50~70~1260.8230.755
    UNet++50~80~530.7940.729
    SFA200>600~700.7000.607
    PraNet50~75~1150.8990.849
    HraNet50~33~1480.9300.879
    Table 4. Comparison of training time and reasoning speed of different methods based on same platform
    Ziqi Han, Qiaohong Liu, Chen Ling, Jiawei Liu, Cunjue Liu. Polyp Segmentation Method Combining HarDNet and Reverse Attention[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0217003
    Download Citation