• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0217003 (2023)
Ziqi Han1, Qiaohong Liu2,*, Chen Ling2, Jiawei Liu1, and Cunjue Liu1
Author Affiliations
  • 1College of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
  • show less
    DOI: 10.3788/LOP212665 Cite this Article Set citation alerts
    Ziqi Han, Qiaohong Liu, Chen Ling, Jiawei Liu, Cunjue Liu. Polyp Segmentation Method Combining HarDNet and Reverse Attention[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0217003 Copy Citation Text show less
    References

    [1] Shussman N, Wexner S D. Colorectal polyps and polyposis syndromes[J]. Gastroenterology Report, 2, 1-15(2014).

    [2] Sung H, Ferlay J, Siegel R L et al[J]. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, 71, 209-249(2021).

    [3] Siegel R L, Miller K D, Sauer A G et al[J]. Colorectal cancer statistics, 2020, 70, 145-164(2020).

    [4] Issa I A, Noureddine M. Colorectal cancer screening: an updated review of the available options[J]. World Journal of Gastroenterology, 23, 5086-5096(2017).

    [5] Ahn S B, Han D S, Bae J H et al. The miss rate for colorectal adenoma determined by quality-adjusted, back-to-back colonoscopies[J]. Gut and Liver, 6, 64-70(2012).

    [6] Liu J W, Liu Q H, Li X O et al. Improved colonic polyp segmentation method based on double U-shaped network[J]. Acta Optica Sinica, 41, 1810001(2021).

    [7] Li D X, Zhang Z. Improved U-net segmentation algorithm for the retinal blood vessel images[J]. Acta Optica Sinica, 40, 1010001(2020).

    [8] Brandao P, Mazomenos E, Ciuti G et al. Fully convolutional neural networks for polyp segmentation in colonoscopy[J]. Proceedings of SPIE, 10134, 101340F(2017).

    [9] Akbari M, Mohrekesh M, Nasr-Esfahani E et al. Polyp segmentation in colonoscopy images using fully convolutional network[C], 69-72(2018).

    [10] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [11] Zhou Z W, Rahman Siddiquee M M, Tajbakhsh N et al. UNet++: a nested U-net architecture for medical image segmentation[M]. Stoyanov D, Taylor Z, Carneiro G, et al. Deep learning in medical image analysis and multimodal learning for clinical decision support. Lecture notes in computer science, 11045, 3-11(2018).

    [12] Jha D, Smedsrud P H, Riegler M A et al. ResUNet++: an advanced architecture for medical image segmentation[C](2019).

    [13] Fang Y Q, Chen C, Yuan Y X et al. Selective feature aggregation network with area-boundary constraints for polyp segmentation[M]. Shen D G, Liu T M, Peters T M, et al. Medical image computing and computer assisted intervention-MICCAI 2019. Lecture notes in computer science, 11764, 302-310(2019).

    [14] Wang P, Chung A C S. DoubleU-net: colorectal cancer diagnosis and gland instance segmentation with text-guided feature control[M]. Bartoli A, Fusiello A. Computer vision-ECCV 2020 workshops. Lecture notes in computer science, 12535, 338-354(2020).

    [15] Zhang R F, Li G B, Li Z et al. Adaptive context selection for polyp segmentation[M]. Martel A L, Abolmaesumi P, Stoyanov D, et al. Medical image computing and computer assisted intervention-MICCAI 2020. Lecture notes in computer science, 12266, 253-262(2020).

    [16] Fan D P, Ji G P, Zhou T et al. PraNet: parallel reverse attention network for polyp segmentation[M]. Martel A L, Abolmaesumi P, Stoyanov D, et al. Medical image computing and computer assisted intervention-MICCAI 2020. Lecture notes in computer science, 12266, 263-273(2020).

    [17] Fang Y Q, Zhu D L, Yao J H et al. ABC-net: area-boundary constraint network with dynamical feature selection for colorectal polyp segmentation[J]. IEEE Sensors Journal, 21, 11799-11809(2021).

    [18] Chao P, Kao C Y, Ruan Y S et al. HarDNet: a low memory traffic network[C], 3551-3560(2019).

    [19] Chen S H, Tan X L, Wang B et al. Reverse attention for salient object detection[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11213, 236-252(2018).

    [20] Liu S T, Huang D, Wang Y H. Receptive field block net for accurate and fast object detection[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11215, 404-419(2018).

    [21] Xie S N, Tu Z W. Holistically-nested edge detection[C](2015).

    Ziqi Han, Qiaohong Liu, Chen Ling, Jiawei Liu, Cunjue Liu. Polyp Segmentation Method Combining HarDNet and Reverse Attention[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0217003
    Download Citation