• Nano-Micro Letters
  • Vol. 17, Issue 1, 047 (2025)
Xiao You1,3,†,*, Huiying Ouyang1,3,5,†, Ruixiang Deng2,†...,**, Qiuqi Zhang1,3,7,†, Zhenzhong Xing1,3,5,†, Xiaowu Chen1,3,†, Qingliang Shan6,†, Jinshan Yang1,3,†, and Shaoming Dong1,3,4,†***|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
  • 2Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
  • 3Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
  • 4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
  • 5School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
  • 6School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
  • 7University of Chinese Academy of Sciences, Beijing, 100039, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01541-y Cite this Article
    Xiao You, Huiying Ouyang, Ruixiang Deng, Qiuqi Zhang, Zhenzhong Xing, Xiaowu Chen, Qingliang Shan, Jinshan Yang, Shaoming Dong. Graphene Aerogel Composites with Self-Organized Nanowires-Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption[J]. Nano-Micro Letters, 2025, 17(1): 047 Copy Citation Text show less
    References

    [1] F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang et al., Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B Eng. 137, 260 (2018).

    [2] Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 6, 1801057 (2019).

    [3] M. Cao, X. Wang, M. Zhang, J. Shu, W. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019).

    [4] H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019).

    [5] J. Lin, J. Qiao, H. Tian, L. Li, W. Liu et al., Ultralight, hierarchical metal–organic framework derivative/graphene hybrid aerogel for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 6, 177 (2023).

    [6] J. Qiao, Q. Song, L. Xuan, J. Liu, X. Zhang et al., Dual cross-linked magnetic mxene aerogel with high strength and durability enables multifunctionality. Adv. Funct. Mater. 34, 2401687 (2024).

    [7] X. Zhang, X. Tian, N. Wu, S. Zhao, Y. Qin et al., Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. (2024).

    [8] X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 9, 7408 (2017).

    [9] Y. Yin, X. Liu, X. Wei, R. Yu, J. Shui, Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 8, 34686 (2016).

    [10] F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018).

    [11] N. Wu, C. Liu, D. Xu, J. Liu, W. Liu et al., Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples. J. Mater. Chem. C 7, 1659 (2019).

    [12] F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021).

    [13] C. Liang, Z. Wang, L. Wu, X. Zhang, H. Wang et al., Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 9, 29950 (2017).

    [14] T. Hou, Z. Jia, A. Feng, Z. Zhou, X. Liu et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J. Mater. Sci. Technol. 68, 61 (2021).

    [15] Z. Wu, H. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022).

    [16] M. Green, X. Chen, Recent progress of nanomaterials for microwave absorption. J. Materiomics 5, 503 (2019).

    [17] Q. Zhang, X. You, L. Tian, M. Wang, X. Zhang et al., Fabrication and efficient electromagnetic waves attenuation of three-dimensional porous reduced graphene oxide/boron nitride/silicon carbide hierarchical structures. J. Mater. Sci. Technol. 155, 192 (2023).

    [18] B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu et al., Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloys Compd. 728, 1065 (2017).

    [19] X. You, J. Yang, K. Huang, M. Wang, X. Zhang et al., Multifunctional silicon carbide matrix composites optimized by three-dimensional graphene scaffolds. Carbon 155, 215 (2019).

    [20] D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022).

    [21] X. Zhang, X. Zhang, H. Yuan, K. Li, Q. Ouyang et al., CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 383, 123208 (2020).

    [22] J. Chen, H. Jia, Z. Liu, Q. Kong, Z. Hou et al., Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption. Carbon 164, 59 (2020).

    [23] J. Xu, L. Xia, J. Luo, S. Lu, X. Huang et al., High-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism. ACS Appl. Mater. Interfaces 12, 20775 (2020).

    [24] X. You, G. Dai, R. Deng, T. Zhang, L. Song et al., Fabrication of high-performance electromagnetic wave absorbing SiC composites reinforced by 3D printed carbon-based nanonetwork with Fe3O4 nanoparticles. Addit. Manuf. 55, 102855 (2022).

    [25] R. Shu, L. Nie, Z. Zhao, X. Yang, Synthesis of nitrogen-doped reduced graphene oxide/magnesium ferrite/polyaniline composite aerogel as a lightweight, broadband and efficient microwave absorber. J. Mater. Sci. Technol. 175, 115 (2024).

    [26] Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30, 2000475 (2020).

    [27] X. Lan, C. Liang, M. Wu, N. Wu, L. He et al., Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves. J. Phys. Chem. C 122, 18537 (2018).

    [28] R. Shu, X. Yang, Z. Zhao, Fabrication of core-shell structure NiFe2O4@SiO2 decorated nitrogen-doped graphene composite aerogels towards excellent electromagnetic absorption in the Ku band. Carbon 210, 118047 (2023).

    [29] B. Liu, J. Xu, R. Shu, Synthesis of nitrogen-doped graphene aerogels modified by magnetic Fe3O4/Fe/C frameworks as excellent dual-band electromagnetic absorbers. J. Mater. Chem. C 11, 12185 (2023).

    [30] K. Su, Y. Wang, K. Hu, X. Fang, J. Yao et al., Ultralight and high-strength SiCnw @SiC foam with highly efficient microwave absorption and heat insulation properties. ACS Appl. Mater. Interfaces 13, 22017 (2021).

    [31] M. Han, X. Yin, Z. Hou, C. Song, X. Li et al., Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 9, 11803 (2017).

    [32] H. Ouyang, X. You, Y. Yang, M. Ren, Q. Zhang et al., Hierarchical porous SiCnws/SiC composites with one-dimensional oriented assemblies for high-temperature broadband wave absorption. J. Mater. Sci. Technol. 214, 1 (2025).

    [33] W. Dai, J. Yu, Y. Wang, Y. Song, F.E. Alam et al., Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J. Mater. Chem. A 3, 4884 (2015).

    [34] X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28, 1803938 (2018).

    [35] R. Shu, L. Nie, X. Liu, K. Chen, Fabrication of nitrogen-doped reduced graphene oxide/tricobalt tetraoxide composite aerogels with high efficiency, broadband microwave absorption, and good compression recovery performance. J. Mater. Sci. Technol. 190, 106 (2024).

    [36] R. Shu, J. Wu, X. Yang, Fabrication of Co/C composites derived from Co-based metal organic frameworks with broadband and efficient electromagnetic absorption. Compos. Part Appl. Sci. Manuf. 173, 107677 (2023).

    [37] Q. Zhang, X. You, H. Ouyang, Y. Yang, Z. Xing et al., Evaluation analysis of electromagnetic wave absorption for self-assembled 3D graphene skeleton-supported BN/SiC composites. J. Mater. Chem. C 12, 12794 (2024).

    [38] X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024).

    [39] P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285 (2019).

    [40] B. Qu, C. Zhu, C. Li, X. Zhang, Y. Chen, Coupling hollow Fe3O4–Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 8, 3730 (2016).

    [41] T. Li, J. Li, Z. Xu, Y. Tian, J. Li et al., Electromagnetic response of multistage-helical nano-micro conducting polymer structures and their enhanced attenuation mechanism of multiscale-chiral synergistic effect. Small 19, 2300233 (2023).

    [42] W. Shen, B. Ren, S. Wu, W. Wang, X. Zhou, Facile synthesis of rGO/SmFe5O12/CoFe2O4 ternary nanocomposites: composition control for superior broadband microwave absorption performance. Appl. Surf. Sci. 453, 464 (2018).

    [43] N. Zhang, Y. Huang, M. Wang, 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanoparticles Co-decorated for efficient electromagnetic wave absorption. Compos. Part B Eng. 136, 135 (2018).

    [44] Z. Cai, L. Su, H. Wang, M. Niu, L. Tao et al., Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 °C. ACS Appl. Mater. Interfaces 13, 16704 (2021).

    [45] L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu et al., Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 73, 185 (2014).

    [46] Y. Zhao, Y. Zhang, C. Yang, L. Cheng, Ultralight and flexible SiC nanoparticle-decorated carbon nanofiber mats for broad-band microwave absorption. Carbon 171, 474 (2021).

    [47] H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7, 9776 (2015).

    [48] B. Zhan, Y. Qu, X. Qi, J. Ding, J. Shao et al., Mixed-dimensional assembly strategy to construct reduced graphene oxide/carbon foams heterostructures for microwave absorption, anti-corrosion and thermal insulation. Nano-Micro Lett. 16, 221 (2024).

    [49] H. Lv, J. Cui, B. Li, M. Yuan, J. Liu et al., Insights into civilian electromagnetic absorption materials: challenges and innovative solutions. Adv. Funct. Mater. (2024).

    [50] X. Liu, J. Zhou, Y. Xue, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024).

    Xiao You, Huiying Ouyang, Ruixiang Deng, Qiuqi Zhang, Zhenzhong Xing, Xiaowu Chen, Qingliang Shan, Jinshan Yang, Shaoming Dong. Graphene Aerogel Composites with Self-Organized Nanowires-Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption[J]. Nano-Micro Letters, 2025, 17(1): 047
    Download Citation