[1] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).
[2] Gabor D. Microscopy by reconstructed wave-fronts[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 197, 454-487(1949).
[3] McNulty I, Kirz J, Jacobsen C et al. High-resolution imaging by Fourier transform X-ray holography[J]. Science, 256, 1009-1012(1992).
[4] Gureyev T E, Roberts A, Nugent K A. Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials[J]. Journal of the Optical Society of America A, 12, 1932-1941(1995).
[5] Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 150, 87-184(2008).
[6] Gerchberg R. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).
[7] Gerchberg R W. Super-resolution through error energy reduction[J]. Optica Acta: International Journal of Optics, 21, 709-720(1974).
[8] Saxton W O[M]. Computer techniques for image processing in electron microscopy(2013).
[9] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 3, 27-29(1978).
[10] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).
[11] Hoppe W. Diffraction in inhomogeneous primary wave fields. I. Principle of phase determination from electron diffraction interference[J]. Acta Cryst, 25, 495-501(1969).
[12] Hoppe W, Strube G. Diffraction in inhomogeneous primary wave. II. Optical experiments for phase determination of lattice interferences[J]. Acta Cryst, 25, 502-507(1969).
[13] Hoppe W. Beugung im inhomogenen primärstrahlwellenfeld. III. amplituden- und phasenbestimmung Bei unperiodischen objekten[J]. Acta Crystallographica Section A, 25, 508-514(1969).
[14] Hegerl R, Hoppe W. Phase evaluation in generalized diffraction (ptychography)[C], 628-629(1972).
[15] Zuo J M, Vartanyants I, Gao M et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities[J]. Science, 300, 1419-1421(2003).
[16] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).
[17] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 85, 4795-4797(2004).
[18] Rodenburg J M, Hurst A C, Cullis A G. Transmission microscopy without lenses for objects of unlimited size[J]. Ultramicroscopy, 107, 227-231(2007).
[19] Giewekemeyer K, Thibault P, Kalbfleisch S et al. Quantitative biological imaging by ptychographic X-ray diffraction microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 529-534(2010).
[20] Hüe F, Rodenburg J M, Maiden A M et al. Wave-front phase retrieval in transmission electron microscopy via ptychography[J]. Physical Review B, 82, 121415(2010).
[21] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).
[22] Maiden A M, Humphry M J, Sarahan M C et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 120, 64-72(2012).
[23] Zhang F C, Peterson I, Vila-Comamala J et al. Translation position determination in ptychographic coherent diffraction imaging[J]. Optics Express, 21, 13592-13606(2013).
[24] Schroer C G, Boye P, Feldkamp J M et al. Coherent X-ray diffraction imaging with nanofocused illumination[J]. Physical Review Letters, 101, 090801(2008).
[25] Hawkes P W. Aberration correction past and present[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 367, 3637-3664(2009).
[26] Hoppe W. Trace structure analysis, ptychography, phase tomography[J]. Ultramicroscopy, 10, 187-198(1982).
[27] Nellist P D, McCallum B C, Rodenburg J M. Resolution beyond the ‘information limit’ in transmission electron microscopy[J]. Nature, 374, 630-632(1995).
[28] Rodenburg J M. Ptychography: early history and 3D scattering effects[J]. Proceedings of SPIE, 8678, 867809(2012).
[29] Seibert M M, Ekeberg T, Maia F R N C et al. Single mimivirus particles intercepted and imaged with an X-ray laser[J]. Nature, 470, 78-81(2011).
[30] Sandberg R L, Paul A, Raymondson D A et al. Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams[J]. Physical Review Letters, 99, 098103(2007).
[31] Miao J W, Charalambous P, Kirz J et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 400, 342-344(1999).
[32] Robinson I K, Vartanyants I A, Williams G J et al. Reconstruction of the shapes of gold nanocrystals using coherent X-ray diffraction[J]. Physical Review Letters, 87, 195505(2001).
[33] de Jong E M L D, Mannino G, Alberti A et al. Strong infrared photoluminescence in highly porous layers of large faceted Si crystalline nanoparticles[J]. Scientific Reports, 6, 25664(2016).
[34] Pfeifer M A, Williams G J, Vartanyants I A et al. Three-dimensional mapping of a deformation field inside a nanocrystal[J]. Nature, 442, 63-66(2006).
[35] Marchesini S, Chapman H N, Hau-Riege S P et al. Coherent X-ray diffractive imaging: applications and limitations[J]. Optics Express, 11, 2344-2353(2003).
[36] Bertolotti J, van Putten E G, Blum C et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 491, 232-234(2012).
[37] Shapiro D, Thibault P, Beetz T et al. Biological imaging by soft X-ray diffraction microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 15343-15346(2005).
[38] Fienup J R, Crimmins T R, Holsztynski W. Reconstruction of the support of an object from the support of its autocorrelation[J]. Journal of the Optical Society of America, 72, 610-624(1982).
[39] Crimmins T R, Fienup J R, Thelen B J. Improved bounds on object support from autocorrelation support and application to phase retrieval[J]. Journal of the Optical Society of America A, 7, 3-13(1990).
[40] Chapman H N, Barty A, Marchesini S et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 23, 1179-1200(2006).
[41] Gallagher N C, Liu B. Method for computing kinoforms that reduces image reconstruction error[J]. Applied Optics, 12, 2328-2335(1973).
[42] Boucher R H. Convergence of algorithms for phase retrieval from two intensity distributions[J]. Proceedings of SPIE, 0231, 130-141(1980).
[43] Bracewell R N[M]. The Fourier transform and its applications(1986).
[44] Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 199, 65-75(2001).
[45] Ivanov V Y, Vorontsov M A, Sivokon V P. Phase retrieval from a set of intensity measurements: theory and experiment[J]. Journal of the Optical Society of America A, 9, 1515-1524(1992).
[46] Faulkner H M L, Rodenburg J M. Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy[J]. Ultramicroscopy, 103, 153-164(2005).
[47] Thibault P, Dierolf M, Bunk O et al. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 109, 338-343(2009).
[48] Seiboth F, Schropp A, Scholz M et al. Perfect X-ray focusing via fitting corrective glasses to aberrated optics[J]. Nature Communications, 8, 14623(2017).
[49] Wang H Y, Liu C, Veetil S P et al. Measurement of the complex transmittance of large optical elements with Ptychographical Iterative Engine[J]. Optics Express, 22, 2159-2166(2014).
[50] Hüe F, Rodenburg J M, Maiden A M et al. Extended ptychography in the transmission electron microscope: possibilities and limitations[J]. Ultramicroscopy, 111, 1117-1123(2011).
[51] Guizar-Sicairos M, Fienup J R. Phase retrieval with transverse translation diversity: a nonlinear optimization approach[J]. Optics Express, 16, 7264-7278(2008).
[52] Pan X C, Liu C, Lin Q et al. Ptycholographic iterative engine with self-positioned scanning illumination[J]. Optics Express, 21, 6162-6168(2013).
[53] Zheng C, He X L, Liu C et al. A study on the influence of the axial distance error to the image quality of the ptychographic iterative engine[J]. Acta Optica Sinica, 34, 1011003(2014).
[54] Liu C, Walther T, Rodenburg J M. Influence of thick crystal effects on ptychographic image reconstruction with moveable illumination[J]. Ultramicroscopy, 109, 1263-1275(2009).
[55] Maiden A M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 29, 1606-1614(2012).
[56] Dierolf M, Menzel A, Thibault P et al. Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 467, 436-439(2010).
[57] Guizar-Sicairos M, Diaz A, Holler M et al. Phase tomography from X-ray coherent diffractive imaging projections[J]. Optics Express, 19, 21345-21357(2011).
[58] Godden T M, Suman R, Humphry M J et al. Ptychographic microscope for three-dimensional imaging[J]. Optics Express, 22, 12513-12523(2014).
[59] Suzuki A, Furutaku S, Shimomura K et al. High-resolution multislice X-ray ptychography of extended thick objects[J]. Physical Review Letters, 112, 053903(2014).
[60] Shen Q, Bazarov I, Thibault P. Diffractive imaging of nonperiodic materials with future coherent X-ray sources[J]. Journal of Synchrotron Radiation, 11, 432-438(2004).
[61] Stachnik K, Mohacsi I, Vartiainen I et al. Influence of finite spatial coherence on ptychographic reconstruction[J]. Applied Physics Letters, 107, 011105(2015).
[62] Burdet N, Shi X W, Parks D et al. Evaluation of partial coherence correction in X-ray ptychography[J]. Optics Express, 23, 5452-5467(2015).
[63] Williams G J, Quiney H M, Peele A G et al. Coherent diffractive imaging and partial coherence[J]. Physical Review B, 75, 104102(2007).
[64] Whitehead L W, Williams G J, Quiney H M et al. Fresnel diffractive imaging: experimental study of coherence and curvature[J]. Physical Review B, 77, 104112(2008).
[65] Whitehead L W, Williams G J, Quiney H M et al. Diffractive imaging using partially coherent X rays[J]. Physical Review Letters, 103, 243902(2009).
[66] Clark J N, Peele A G. Simultaneous sample and spatial coherence characterisation using diffractive imaging[J]. Applied Physics Letters, 99, 154103(2011).
[67] Clark J N, Huang X, Harder R et al. High-resolution three-dimensional partially coherent diffraction imaging[J]. Nature Communications, 3, 993(2012).
[68] Chen B, Dilanian R A, Teichmann S et al. Multiple wavelength diffractive imaging[J]. Physical Review A, 79, 023809(2009).
[69] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 494, 68-71(2013).
[70] Batey D J, Claus D, Rodenburg J M. Information multiplexing in ptychography[J]. Ultramicroscopy, 138, 13-21(2014).
[71] Clark J N, Huang X J, Harder R J et al. Dynamic imaging using ptychography[J]. Physical Review Letters, 112, 113901(2014).
[72] Liu C, Zhu J Q, Rodenburg J M. Influence of the illumination coherency and illumination aperture on the ptychographic iterative microscopy[J]. Chinese Physics B, 24, 024201(2015).
[73] Yu W, Wang S Y, Veetil S et al. High-quality image reconstruction method for ptychography with partially coherent illumination[J]. Physical Review B, 93, 241105(2016).
[74] Pan X C, Liu C, Zhu J Q. Single shot ptychographical iterative engine based on multi-beam illumination[J]. Applied Physics Letters, 103, 171105(2013).
[75] Sidorenko P, Cohen O. Single-shot ptychography[J]. Optica, 3, 9-14(2015).
[76] Sun A H, He X L, Kong Y et al. Ultra-high speed digital micro-mirror device based ptychographic iterative engine method[J]. Biomedical Optics Express, 8, 3155-3162(2017).
[77] Yao Y D, Veetil S P, Liu C et al. Ptychographic phase microscope based on high-speed modulation on the illumination beam[J]. Journal of Biomedical Optics, 22, 036010(2017).
[78] Zhang F C, Rodenburg J M. Phase retrieval based on wave-front relay and modulation[J]. Physical Review B, 82, 121104(2010).
[79] Zhang F C, Chen B, Morrison G R et al. Phase retrieval by coherent modulation imaging[J]. Nature Communications, 7, 13367(2016).
[80] Pelz P M, Guizar-Sicairos M, Thibault P et al. On-the-fly scans for X-ray ptychography[J]. Applied Physics Letters, 105, 251101(2014).
[81] Clark J N, Huang X J, Harder R J et al. Continuous scanning mode for ptychography[J]. Optics Letters, 39, 6066-6069(2014).
[82] Deng J J, Nashed Y S G, Chen S et al. Continuous motion scan ptychography: characterization for increased speed in coherent X-ray imaging[J]. Optics Express, 23, 5438-5451(2015).
[83] Huang X J, Lauer K, Clark J N et al. Fly-scan ptychography[J]. Scientific Reports, 5, 9074(2015).
[84] Huang X J, Yan H F, Ge M Y et al. Artifact mitigation of ptychography integrated with on-the-fly scanning probe microscopy[J]. Applied Physics Letters, 111, 023103(2017).
[85] Pan X C, Veetil S P, Liu C et al. High contrast imaging for weakly diffracting specimens with ptychographical iterative engine[J]. Optics Letters, 37, 3348-3350(2012).
[86] Maiden A M, Humphry M J, Zhang F C et al. Superresolution imaging via ptychography[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 28, 604-612(2011).
[87] Pan X C, Veetil S P, Wang B S et al. Ptychographical imaging with partially saturated diffraction patterns[J]. Journal of Modern Optics, 62, 1270-1277(2015).
[88] Thibault P, Dierolf M, Menzel A et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 321, 379-382(2008).
[89] Vila-Comamala J, Diaz A, Guizar-Sicairos M et al. Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging[J]. Optics Express, 19, 21333-21344(2011).
[90] Maiden A M, Morrison G R, Kaulich B et al. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination[J]. Nature Communications, 4, 1669(2013).
[91] Takahashi Y, Suzuki A, Zettsu N et al. Multiscale element mapping of buried structures by ptychographic X-ray diffraction microscopy using anomalous scattering[J]. Applied Physics Letters, 99, 131905(2011).
[92] Nishino Y, Takahashi Y, Imamoto N et al. Three-dimensional visualization of a human chromosome using coherent X-ray diffraction[J]. Physical Review Letters, 102, 018101(2009).
[93] Chapman H N. Focus on X-ray diffraction[J]. Science, 321, 352-353(2008).
[94] Chapman H N, Nugent K A. Coherent lensless X-ray imaging[J]. Nature Photonics, 4, 833-839(2010).
[95] Rodenburg J M, Hurst A C, Cullis A G et al. Hard-X-ray lensless imaging of extended objects[J]. Physical Review Letters, 98, 034801(2007).
[96] Giewekemeyer K, Beckers M, Gorniak T et al. Ptychographic coherent X-ray diffractive imaging in the water window[J]. Optics Express, 19, 1037-1050(2011).
[97] Jones M W M, Abbey B, Gianoncelli A et al. Phase-diverse Fresnel coherent diffractive imaging of malaria parasite-infected red blood cells in the water window[J]. Optics Express, 21, 32151-32159(2013).
[98] Deng J J, Vine D J, Chen S et al. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 2314-2319(2015).
[99] Huang X J, Nelson J, Kirz J et al. Soft X-ray diffraction microscopy of a frozen hydrated yeast cell[J]. Physical Review Letters, 103, 198101(2009).
[100] Jones M W M, Elgass K D, Junker M D et al. Molar concentration from sequential 2-D water-window X-ray ptychography and X-ray fluorescence in hydrated cells[J]. Scientific Reports, 6, 24280(2016).
[101] Torrance A T J, Abbey B, Putkunz C T et al. Using coherent X-ray ptychography to probe medium-range order[J]. Optics Express, 21, 28019-28028(2013).
[102] Thibault P, Dierolf M, Kewish C M et al. Contrast mechanisms in scanning transmission X-ray microscopy[J]. Physical Review A, 80, 043813(2009).
[103] Rodenburg J M, Bates R H T. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 339, 521-553(1992).
[104] Holler M, Diaz A, Guizar-Sicairos M et al. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution[J]. Scientific Reports, 4, 3857(2014).
[105] Wilke R N, Priebe M, Bartels M et al. Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction[J]. Optics Express, 20, 19232-19254(2012).
[106] Diaz A, Malkova B, Holler M et al. Three-dimensional mass density mapping of cellular ultrastructure by ptychographic X-ray nanotomography[J]. Journal of Structural Biology, 192, 461-469(2015).
[107] Giewekemeyer K, Hackenberg C, Aquila A et al. Tomography of a cryo-immobilized yeast cell using ptychographic coherent X-ray diffractive imaging[J]. Biophysical Journal, 109, 1986-1995(2015).
[108] Peterson I, Abbey B, Putkunz C T et al. Nanoscale Fresnel coherent diffraction imaging tomography using ptychography[J]. Optics Express, 20, 24678-24685(2012).
[109] Diaz A, Guizar-Sicairos M, Poeppel A et al. Characterization of carbon fibers using X-ray phase nanotomography[J]. Carbon, 67, 98-103(2014).
[110] Donnelly C, Guizar-Sicairos M, Scagnoli V et al. Element-specific X-ray phase tomography of 3D structures at the nanoscale[J]. Physical Review Letters, 114, 115501(2015).
[111] Trtik P, Diaz A, Guizar-Sicairos M et al. Density mapping of hardened cement paste using ptychographic X-ray computed tomography[J]. Cement and Concrete Composites, 36, 71-77(2013).
[112] Beckers M, Senkbeil T, Gorniak T et al. Chemical contrast in soft X-ray ptychography[J]. Physical Review Letters, 107, 208101(2011).
[113] Shapiro D A, Yu Y S, Tyliszczak T et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy[J]. Nature Photonics, 8, 765-769(2014).
[114] Donnelly C, Scagnoli V, Guizar-Sicairos M et al. High-resolution hard X-ray magnetic imaging with dichroic ptychography[J]. Physical Review B, 94, 064421(2016).
[115] Shi X, Fischer P, Neu V et al. Soft X-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films[J]. Applied Physics Letters, 108, 094103(2016).
[116] Wise A M, Weker J N, Kalirai S et al. Nanoscale chemical imaging of an individual catalyst particle with soft X-ray ptychography[J]. ACS Catalysis, 6, 2178-2181(2016).
[117] Hoppe R, Reinhardt J, Hofmann G et al. High-resolution chemical imaging of gold nanoparticles using hard X-ray ptychography[J]. Applied Physics Letters, 102, 203104(2013).
[118] Schropp A, Boye P, Feldkamp J M et al. Hard X-ray nanobeam characterization by coherent diffraction microscopy[J]. Applied Physics Letters, 96, 091102(2010).
[119] da Silva J C, Pacureanu A, Yang Y et al. Efficient concentration of high-energy x-rays for diffraction-limited imaging resolution[J]. Optica, 4, 492-495(2017).
[120] Kewish C M, Guizar-Sicairos M, Liu C A et al. Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data[J]. Optics Express, 18, 23420-23427(2010).
[121] Huang X J, Yan H F, Nazaretski E et al. 11 nm hard X-ray focus from a large-aperture multilayer Laue lens[J]. Scientific Reports, 3, 3562(2013).
[122] Stockmar M, Zanette I, Dierolf M et al. X-ray near-field ptychography for optically thick specimens[J]. Physical Review Applied, 3, 014005(2015).
[123] Hruszkewycz S O, Zhang Q, Holt M V et al. Structural sensitivity of X-ray Bragg projection ptychography to domain patterns in epitaxial thin films[J]. Physical Review A, 94, 043803(2016).
[124] Hruszkewycz S O, Holt M V, Tripathi A et al. Framework for three-dimensional coherent diffraction imaging by focused beam X-ray Bragg ptychography[J]. Optics Letters, 36, 2227-2229(2011).
[125] Deng J J, Vine D J, Chen S et al. X-ray ptychographic and fluorescence microscopy of frozen-hydrated cells using continuous scanning[J]. Scientific Reports, 7, 445(2017).
[126] Vartiainen I, Mohacsi I, Stachnik K et al. Zernike X-ray ptychography[J]. Optics Letters, 41, 721-724(2016).
[127] Urban K W. Studying atomic structures by aberration-corrected transmission electron microscopy[J]. Science, 321, 506-510(2008).
[128] Muller D A. Structure and bonding at the atomic scale by scanning transmission electron microscopy[J]. Nature Materials, 8, 263-270(2009).
[129] Zuo J, Zhang J, Huang W et al. Combining real and reciprocal space information for aberration free coherent electron diffractive imaging[J]. Ultramicroscopy, 111, 817-823(2011).
[130] Krivanek O L, Chisholm M F, Nicolosi V et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy[J]. Nature, 464, 571-574(2010).
[131] Ishikawa R, Okunishi E, Sawada H et al. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy[J]. Nature Materials, 10, 278-281(2011).
[132] Hÿtch M J, Dunin-Borkowski R E, Scheinfein M R et al. Vortex flux channeling in magnetic nanoparticle chains[J]. Physical Review Letters, 91, 257207(2003).
[133] Twitchett A C, Dunin-Borkowski R E, Midgley P A. Quantitative electron holography of biased semiconductor devices[J]. Physical Review Letters, 88, 238302(2002).
[134] Völkl E, Allard L F, Joy D C[M]. Introduction to electron holography(2013).
[135] Humphry M J, Kraus B, Hurst A C et al. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging[J]. Nature Communications, 3, 730(2012).
[136] Putkunz C T, D’Alfonso A J, Morgan A J et al. Atom-scale ptychographic electron diffractive imaging of boron nitride cones[J]. Physical Review Letters, 108, 073901(2012).
[137] D’Alfonso A J, Morgan A J, Yan A W C et al. Deterministic electron ptychography at atomic resolution[J]. Physical Review B, 89, 064101(2014).
[138] Wang P, Zhang F C, Gao S et al. Electron ptychographic diffractive imaging of boron atoms in LaB6 crystals[J]. Scientific Reports, 7, 2857(2017).
[139] Maiden A M, Sarahan M C, Stagg M D et al. Quantitative electron phase imaging with high sensitivity and an unlimited field of view[J]. Scientific Reports, 5, 14690(2015).
[140] Yang H, Rutte R N, Jones L et al. Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures[J]. Nature Communications, 7, 12532(2016).
[141] Cao S, Kok P, Li P et al. Modal decomposition of a propagating matter wave via electron ptychography[J]. Physical Review A, 94, 063621(2016).
[142] Gao S, Wang P, Zhang F C et al. Electron ptychographic microscopy for three-dimensional imaging[J]. Nature Communications, 8, 163(2017).
[143] Cao S, Maiden A M, Rodenburg J M. Image feature delocalization in defocused probe electron ptychography[J]. Ultramicroscopy, 187, 71-83(2018).
[144] D’Alfonso A J, Allen L J, Sawada H et al. Dose-dependent high-resolution electron ptychography[J]. Journal of Applied Physics, 119, 054302(2016).
[145] Williams D B B, Carter C B, Veyssiere P[M]. Transmission electron microscopy: a textbook for materials science(1998).
[146] Wang H Y, Liu C, He X L et al. Wavefront measurement techniques used in high power lasers[J]. High Power Laser Science and Engineering, 2, 12-23(2014).
[147] Wang H Y, Liu C, Pan X C et al. Phase imaging with rotating illumination[J]. Chinese Optics Letters, 12, 010501(2014).
[148] He X L, Veetil S P, Liu C et al. Accurate focal spot diagnostics based on a single shot coherent modulation imaging[J]. Laser Physics Letters, 12, 0105005(2015).
[149] Zhu J Q, Tao H, Pan X C et al. Computational imaging streamlines high-power laser system characterization[J]. Laser Focus World, 51, 39-42(2015).
[150] Tao H, Veetil S P, Cheng J et al. Measurement of the complex transmittance of large optical elements with modulation coherent imaging[J]. Applied Optics, 54, 1776-1781(2015).
[151] Tao H, Veetil S, Pan X C et al. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method[J]. Applied Optics, 54, 6632-6639(2015).
[152] Wang H, Veetil S, Liu C Y et al. Measurement of thermal distortion in high power laser glass elements using ptychography[J]. Laser Physics Letters, 12, 025005(2015).
[153] Pan X C, Tao H, Liu C et al. Applications of iterative algorithm based on phase modulation in high power laser facilities[J]. Chinese Journal of Lasers, 43, 0108001(2016).
[154] Yao Y D, Liu C, Pan X C et al. Research status and development trend of PIE imaging method[J]. Chinese Journal of Lasers, 43, 0609001(2016).
[155] Tao H, Veetil S P, Pan X C et al. Lens-free coherent modulation imaging with collimated illumination[J]. Chinese Optics Letters, 14, 071203(2016).
[156] Pan X C, Veetil S P, Liu C Y et al. On-shot laser beam diagnostics for high-power laser facility with phase modulation imaging[J]. Laser Physics Letters, 13, 055001(2016).
[157] Tao H, Liu C Y, Pan X C et al. Measurement of thermal distortion of the optical element in high repetition rate laser with coherent modulation imaging[J]. Chinese Journal of Lasers, 43, 1101002(2016).
[158] Bai Y R, Vettil S P, Pan X C et al. Ptychographic microscopy via wavelength scanning[J]. APL Photonics, 2, 056101(2017).
[159] Yao Y D, Liu C, Zhu J Q. Compensation for the setup instability in ptychographic imaging[J]. Optics Express, 25, 11969-11983(2017).
[160] Zhang X J, Cheng B, Liu C et al. Quantitative birefringence distribution measurement using mixed-state ptychography[J]. Optics Express, 25, 30851-30861(2017).
[161] Dong X, Wang H Y, Liu C et al. Measurement of large optical elements used for inertial confinement fusion with ptychography[J]. Advanced Optical Technologies, 6, 485-491(2017).
[162] Dong X, Pan X C, Liu C et al. Single shot multi-wavelength phase retrieval with coherent modulation imaging[J]. Optics Letters, 43, 1762-1765(2018).
[163] Zhu J Q, Zhu J, Li X C et al. High power glass laser research progresses in NLHPLP[J]. Proceedings of SPIE, 10084, 1008405(2017).
[164] Zheng W G, Wei X F, Zhu Q H et al. Laser performance of the SG-Ⅲ laser facility[J]. High Power Laser Science and Engineering, 4, 5-12(2016).
[165] Tang S X, Guo Y J, Liu D Z et al. Single lens sensor and reference for auto-alignment[J]. High Power Laser Science and Engineering, 6, 31-36(2018).
[166] Zhu P, Xie X L, Kang J et al. Systematic study of spatiotemporal influences on temporal contrast in the focal region in large-aperture broadband ultrashort petawatt lasers[J]. High Power Laser Science and Engineering, 6, 48-54(2018).
[167] Ren L, Shao P, Zhao D F et al. Target alignment in the Shen-Guang Ⅱ Upgrade laser facility[J]. High Power Laser Science and Engineering, 6, 62-70(2018).
[168] Zacharias R A, Bliss E S, Winters S et al. Wavefront control of high-power laser beams in the National Ignition Facility (NIF)[J]. Proceedings of SPIE, 3889, 332-343(2000).
[169] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).
[170] Ou X Z, Horstmeyer R, Yang C et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 38, 4845-4848(2013).
[171] Zheng G A. Breakthroughs in photonics 2013: Fourier ptychographic imaging[J]. IEEE Photonics Journal, 6, 0701207(2014).
[172] Ou X Z, Horstmeyer R, Zheng G A et al. High numerical aperture Fourier ptychography: principle, implementation and characterization[J]. Optics Express, 23, 3472-3491(2015).
[173] Sun J S, Chen Q, Zhang Y Z et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 7, 1336-1350(2016).
[174] Yeh L H, Dong J, Zhong J S et al. Experimental robustness of Fourier ptychography phase retrieval algorithms[J]. Optics Express, 23, 33214-33240(2015).
[175] Guo K K, Dong S Y, Nanda P et al. Optimization of sampling pattern and the design of Fourier ptychographic illuminator[J]. Optics Express, 23, 6171-6180(2015).
[176] Ou X Z, Zheng G A, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 22, 4960-4972(2014).
[177] Bian Z C, Dong S Y, Zheng G A. Adaptive system correction for robust Fourier ptychographic imaging[J]. Optics Express, 21, 32400-32410(2013).
[178] Chung J, Kim J, Ou X Z et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography[J]. Biomedical Optics Express, 7, 352-368(2016).
[179] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2, 104-111(2015).
[180] Kuang C F, Ma Y, Zhou R J et al. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy[J]. Optics Express, 23, 26999-27010(2015).
[181] Chung J, Lu H W, Ou X Z et al. Wide-field Fourier ptychographic microscopy using laser illumination source[J]. Biomedical Optics Express, 7, 4787-4802(2016).
[182] Bian L H, Suo J L, Situ G H et al. Content adaptive illumination for Fourier ptychography[J]. Optics Letters, 39, 6648-6651(2014).
[183] Dong S Y, Bian Z C, Shiradkar R et al. Sparsely sampled Fourier ptychography[J]. Optics Express, 22, 5455-5464(2014).
[184] Tian L, Li X, Ramchandran K et al. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope[J]. Biomedical Optics Express, 5, 2376-2389(2014).
[185] He X L, Liu C, Zhu J Q. Single-shot Fourier ptychography based on diffractive beam splitting[J]. Optics Letters, 43, 214-217(2018).
[186] Yao Y, He X, Liu C et al. Phase retrieval based on coded splitting modulation[J]. Journal of Microscopy, 270, 129-135(2018).
[187] He X, Pan X C, Liu C et al. Single-shot phase retrieval based on beam splitting[J]. Applied Optics, 57, 4832-4838(2018).
[188] Korzhimanov A V, Gonoskov A A, Khazanov E A et al. Horizons of petawatt laser technology[J]. Physics-Uspekhi, 54, 9-28(2011).
[189] Danson C, Hillier D, Hopps N et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 3, 5-18(2015).
[190] Zhu J Q, Xie X L, Sun M Z et al. Analysis and construction status of SG-Ⅱ 5PW laser facility[J]. High Power Laser Science and Engineering, 6, 115-127(2018).
[191] Sidorenko P, Lahav O, Avnat Z et al. Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness[J]. Optica, 3, 1320-1330(2016).
[192] Spangenberg D M, Brügmann M, Rohwer E et al. All-optical implementation of a time-domain ptychographic pulse reconstruction setup[J]. Applied Optics, 55, 5008-5013(2016).
[193] Witting T, Greening D, Walke D et al. Time-domain ptychography of over-octave-spanning laser pulses in the single-cycle regime[J]. Optics Letters, 41, 4218-4221(2016).
[194] Spangenberg D, Neethling P, Rohwer E et al. Time-domain ptychography[J]. Physical Review A, 91, 021803(2015).
[195] Lucchini M, Brügmann M H, Ludwig A et al. Ptychographic reconstruction of attosecond pulses[J]. Optics Express, 23, 29502-29513(2015).
[196] Bendory T, Sidorenko P, Eldar Y C. On the uniqueness of FROG methods[J]. IEEE Signal Processing Letters, 24, 722-726(2017).
[197] Spangenberg D, Rohwer E, Brügmann M H et al. Ptychographic ultrafast pulse reconstruction[J]. Optics Letters, 40, 1002-1005(2015).
[198] Trebino R, DeLong K W, Fittinghoff D N et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating[J]. Review of Scientific Instruments, 68, 3277-3295(1997).
[199] Trebino R[M]. Frequency-resolved optical gating: the measurement of ultrashort laser pulses(2012).
[200] Trebino R, Kane D J. Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating[J]. Journal of the Optical Society of America A, 10, 1101-1111(1993).
[201] Fienup J R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint[J]. Journal of the Optical Society of America A, 4, 118-123(1987).
[202] Millane R P. Multidimensional phase problems[J]. Journal of the Optical Society of America A, 13, 725-734(1996).
[203] Kane D J. Recent progress toward real-time measurement of ultrashort laser pulses[J]. IEEE Journal of Quantum Electronics, 35, 421-431(1999).
[204] Kane D J. Principal components generalized projections: a review[J]. Journal of the Optical Society of America B, 25, A120-A132(2008).
[205] Hyyti J, Escoto E, Steinmeyer G et al. Interferometric time-domain ptychography for ultrafast pulse characterization[J]. Optics Letters, 42, 2185-2188(2017).
[206] Lucchini M, Lucarelli G D, Murari M et al. Few-femtosecond extreme-ultraviolet pulses fully reconstructed by a ptychographic technique[J]. Optics Express, 26, 6771-6784(2018).