• Matter and Radiation at Extremes
  • Vol. 8, Issue 5, 058404 (2023)
Hui Xie1,*, Hong Wang1, Fang Qin1, Wei Han1..., Suxin Wang1, Youchun Wang2, Fubo Tian3 and Defang Duan3|Show fewer author(s)
Author Affiliations
  • 1College of Physics and Electronic Engineering, Hebei Normal University for Nationalities, Chengde 067000, China
  • 2College of Physics and Electronic Engineering, Linyi University, Linyi 276000, China
  • 3College of Physics, Jilin University, Changchun 130012, China
  • show less
    DOI: 10.1063/5.0157250 Cite this Article
    Hui Xie, Hong Wang, Fang Qin, Wei Han, Suxin Wang, Youchun Wang, Fubo Tian, Defang Duan. A fresh class of superconducting and hard pentaborides[J]. Matter and Radiation at Extremes, 2023, 8(5): 058404 Copy Citation Text show less
    References

    [1] J.Akimitsu, T.Muranaka, J.Nagamatsu, N.Nakagawa, Y.Zenitani. Superconductivity at 39 K in magnesium diboride. Nature, 410, 63-64(2001).

    [2] T.Cui, D.Duan, X.Huang, D.Li, B.Liu, Y.Liu, Y.Ma, F.Tian, H.Yu. Pressure-induced decomposition of solid hydrogen sulfide. Phys. Rev. B, 91, 180502(2015).

    [3] T.Cui, D.Duan, B.Liu, Y.Liu, Y.Ma, Z.Shao. Structure and superconductivity of hydrides at high pressures. Natl. Sci. Rev., 4, 121-135(2016).

    [4] A. P.Drozdov, M. I.Eremets, V.Ksenofontov, S. I.Shylin, I. A.Troyan. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73(2015).

    [5] T.Cui, D.Duan, D.Li, B.Liu, Z.Shao, H.Song, F.Tian, Y.Wang, X.Xiao, H.Xie. High-temperature superconductivity in ternary clathrate YCaH12 under high pressures. J. Phys.: Condens. Matter, 31, 245404(2019).

    [6] T.Cui, D.Duan, X.Feng, S.Jiang, V. Z.Kresin, C. J.Pickard, S. A. T.Redfern, H.Song, H.Xie, Y.Yao, Z.Zhang. Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor. Phys. Rev. Lett., 125, 217001(2020).

    [7] T.Cui, M.Du, D.Duan, M. J.Hutcheon, V. Z.Kresin, C. J.Pickard, A. M.Shipley, H.Song, Y.Yao, Z.Zhang. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure. Phys. Rev. Lett., 128, 047001(2022).

    [8] R. J.Hemley, Y.Li, H.Liu, S.Lu, S.Meng, I. I.Naumov, J. S.Tse, B.Yang. Superconductivity in dense carbon-based materials. Phys. Rev. B, 93, 104509(2016).

    [9] Y.Ma, R. J.Needs, F.Peng, C. J.Pickard, Y.Sun, Q.Wu. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett., 119, 107001(2017).

    [10] M.Ahart, M.Baldini, Z. M.Geballe, R. J.Hemley, H.Liu, Y.Meng, A. K.Mishra, M.Somayazulu. Synthesis and stability of lanthanum superhydrides. Angew. Chem., Int. Ed., 57, 688-692(2018).

    [11] F. F.Balakirev, L.Balicas, S. P.Besedin, A. P.Drozdov, M. I.Eremets, D. E.Graf, E.Greenberg, D. A.Knyazev, P. P.Kong, M. A.Kuzovnikov, V. S.Minkov, S.Mozaffari, V. B.Prakapenka, M.Tkacz. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528-531(2019).

    [12] M.Ahart, M.Baldini, Z. M.Geballe, R. J.Hemley, Y.Meng, A. K.Mishra, M.Somayazulu, V. V.Struzhkin. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).

    [13] M. A. G.Aranda. Crystal structures of copper-based high-Tc superconductors. Adv. Mater., 6, 905-921(1994).

    [14] P.Dai. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys., 87, 855-896(2015).

    [15] J. J.Gilman, R. B.Kaner, S. H.Tolbert. Designing superhard materials. Science, 308, 1268-1269(2005).

    [16] G.Akopov, R. B.Kaner, M. T.Yeung. Rediscovering the crystal chemistry of borides. Adv. Mater., 29, 1604506(2017).

    [17] T.Cui, Y.Li, Y.Ma, Y.Xie, Y.Xu, W.Yu, L.Zhang, G.Zou. First-principles study of the lattice dynamics, thermodynamic properties and electron-phonon coupling of YB6. Phys. Rev. B, 76, 214103(2007).

    [18] M. M.Davari Esfahani, H.Dong, A. R.Oganov, M. S.Rakitin, S.Wang, X. F.Zhou, Q.Zhu. Novel magnesium borides and their superconductivity. Phys. Chem. Chem. Phys., 19, 14486-14494(2017).

    [19] A.Bergara, G.Gao, Y.Gao, J.He, X.Liang, R.Sun, Y.Tian, L.Wang, Y.Xie, B.Xu, D.Yu, X.-F.Zhou. Prediction of superconductivity in pressure-induced new silicon boride phases. Phys. Rev. B, 101, 014112(2020).

    [20] M.Gao, Z.-F.Ouyang, X.-W.Yan. Electronic structure, phonons, and high-temperature phonon-mediated superconductivity in lithium-intercalated diamond-like boron compounds. Appl. Phys. Express, 13, 083003(2020).

    [21] J.Hao, Y.Li, Y.Liang, S.Lin, Z.Qu, M.Xu, X.Yuan. Pressure-induced boron clathrates with ambient-pressure superconductivity. J. Mater. Chem. C, 9, 13782-13788(2021).

    [22] J.Cai, G.Liu, H.Liu, L.Ma, H.Wang, H.Wang, G.Yang, X.Yang, M.Zhou. Design and synthesis of clathrate LaB8 with superconductivity. Phys. Rev. B, 104, 174112(2021).

    [23] J.Du, X.Li, F.Peng. Pressure-induced evolution of structures and promising superconductivity of ScB6. Phys. Chem. Chem. Phys., 24, 10079-10084(2022).

    [24] X.Chen, S.Han, X.Liu, Y.Liu, C.Wang, L.Yu, R.Yu, Y.Zhang, B.Zhao. Clathrate‐like alkali and alkaline‐earth metal borides: A new family of superconductors with superior hardness. Adv. Funct. Mater., 33, 2213377(2023).

    [25] G. C.Che, L. X.Chen, X. Q.Fu, W. L.Guo, X. P.Jia, H. A.Ma, G. Z.Ren, Z. A.Ren, Z. X.Zhao, P. W.Zhu, G. T.Zou. Superhard MgB2 bulk material prepared by high-pressure sintering. J. Phys.: Condens. Matter, 14, 11181(2002).

    [26] T.Cui, D.Duan, D.Li, B.Liu, Z.Liu, Y.Lv, F.Tian, S.Wei. Strong covalent boron bonding induced extreme hardness of VB3. J. Alloys Compd., 688, 1101-1107(2016).

    [27] L. P.Ding, H.Lu, P.Shao, Y.Tang, Y. H.Tiandong, Z. L.Zhao. Crystal structures, phase stabilities, electronic properties, and hardness of yttrium borides: New insight from first-principles calculations. J. Phys. Chem. Lett., 12, 5423-5429(2021).

    [28] F.Han, W.Li, H.Liu, Q.Wang, Q.Yang, H.Yu, S.Zhang, K.Zhao. Orthorhombic ScB3 and hexagonal ScB6 with high hardness. Phys. Rev. B, 105, 094104(2022).

    [29] Q.Chen, H.Gao, J. L.He, C.Liu, M. D.Ma, J.Sun, Y. J.Tian, H. T.Wang, K.Xia, D. Y.Xing. Superhard and superconducting B6C. Mater. Today Phys., 3, 76-84(2017).

    [30] F.Gao, H.Gou, Z.Li, H.Liu, H.-k.Mao, B.Wan, L.Wu, Y.Yao, J.Zhang. Coexistence of superconductivity and superhardness in beryllium hexaboride driven by inherent multicenter bonding. J. Phys. Chem. Lett., 7, 4898-4904(2016).

    [31] V. B.Filipov, L.Gerward, V.Kanchana, G.Levchenko, A.Lyaschenko, K.Ramesh Babu, J.Staun Olsen, A.Svane, G.Vaitheeswaran, A.Wa?kowska. Thermoelastic properties of ScB2, TiB2, YB4 and HoB4: Experimental and theoretical studies. Acta Mater., 59, 4886-4894(2011).

    [32] P. K.Liao, K. E.Spear. The B-Y (boron-yttrium) system. J. Phase Equilib., 16, 521-524(1995).

    [33] Z.Feng, Z.Li, H.Xiang, Y.Zhou. General trends in electronic structure, stability, chemical bonding and mechanical properties of ultrahigh temperature ceramics TMB2 (TM = transition metal). J. Mater. Sci. Technol., 31, 285-294(2015).

    [34] K.Andres, E.Corenzwit, T. H.Geballe, G. W.Hull, J. P.Maita, B. T.Matthias. Superconductivity and antiferromagnetism in boron-rich lattices. Science, 159, 530(1968).

    [35] B.Gao, Q.Li, Y.Ma, X.Shao, X.Song, J.Wang. High-pressure evolution of unexpected chemical bonding and promising superconducting properties of YB6. J. Phys. Chem. C, 122, 27820-27828(2018).

    [36] R. J.Needs, C. J.Pickard. Ab initio random structure searching. J. Phys.: Condens. Matter, 23, 053201(2011).

    [37] S. J.Clark, P. J.Hasnip, P. J. D.Lindan, M. C.Payne, C. J.Pickard, M. J.Probert, M. D.Segall. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter, 14, 2717(2002).

    [38] K.Burke, M.Ernzerhof, J. P.Perdew. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [39] J.Furthmüller, G.Kresse. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15-50(1996).

    [40] M. L.Klein, G. J.Martyna, M. E.Tuckerman. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 97, 2635-2643(1992).

    [41] Y.Kawazoe, Z. Q.Li, K.Parlinski. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett., 78, 4063-4066(1997).

    [42] F.Oba, I.Tanaka, A.Togo. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B, 78, 134106(2008).

    [43] S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, G. L.Chiarotti, M.Cococcioni, I.Dabo, A.Dal Corso, S.de Gironcoli, S.Fabris, G.Fratesi, R.Gebauer, U.Gerstmann, P.Giannozzi, C.Gougoussis, A.Kokalj, M.Lazzeri, L.Martin-Samos, N.Marzari, F.Mauri, R.Mazzarello, S.Paolini, A.Pasquarello, L.Paulatto, C.Sbraccia, S.Scandolo, G.Sclauzero, A. P.Seitsonen, A.Smogunov, P.Umari, R. M.Wentzcovitch. Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 21, 395502(2009).

    [44] P. B.Allen, R. C.Dynes. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B, 12, 905-922(1975).

    [45] R.Hill. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A, 65, 349-354(1952).

    [46] X.-Q.Chen, D.Li, Y.Li, H.Niu. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19, 1275-1281(2011).

    [47] J.Chen, C.Gatti, C. W.Glass, O. O.Kurakevych, Z.Liu, Y.Ma, Y.Ma, A. R.Oganov, V. L.Solozhenko, T.Yu. Ionic high-pressure form of elemental boron. Nature, 457, 863-867(2009).

    [48] Y.Chen, Q.-M.Hu, R.Yang. P6222 phase of yttrium above 206 GPa from first principles. Phys. Rev. B, 84, 132101(2011).

    [49] G.Ceder, G.Hautier, P.Lazic, K.Persson, Y.Wu. First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy Environ. Sci., 6, 157-168(2013).

    [50] A. D.Becke, K. E.Edgecombe. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys., 92, 5397-5403(1990).

    [51] P. E.Bloechl, R.Dronskowski. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem., 97, 8617-8624(1993).

    [52] X.-f.Hao, X.-j.Liu, J.Meng, Z.-j.Wu, H.-p.Xiang, E.-j.Zhao. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B, 76, 054115(2007).

    Hui Xie, Hong Wang, Fang Qin, Wei Han, Suxin Wang, Youchun Wang, Fubo Tian, Defang Duan. A fresh class of superconducting and hard pentaborides[J]. Matter and Radiation at Extremes, 2023, 8(5): 058404
    Download Citation