[1] Zhang Z Y, Ding J W, Wei H W et al. Multi-level features cascade for person re-identification based on attention mechanism[J]. Laser & Optoelectronics Progress, 58, 2215003(2021).
[2] Zhang D X, Yuan P C, Wang J. Person reidentification based on multiscale batch feature-discarding network[J]. Laser & Optoelectronics Progress, 59, 1215009(2022).
[3] Wang F S, Liu F R, Chen J G et al. Multi-loss joint cross-modality person re-identification method integrating attention mechanism[J]. Laser & Optoelectronics Progress, 59, 0810010(2022).
[4] Li M J, Ji G L. Research progress on video-based person re-identification[J]. Journal of Nanjing Normal University (Natural Science Edition), 43, 120-130(2020).
[5] Jiang M, Leng B, Song G L et al. Weighted triple-sequence loss for video-based person re-identification[J]. Neurocomputing, 381, 314-321(2020).
[6] Wu J W, Wang S Y. Statistical-based adaptive background modeling algorithm for grayscale video[J]. Chinese Journal of Lasers, 48, 0309001(2021).
[7] Li P K, Pan P B, Liu P et al. Hierarchical temporal modeling with mutual distance matching for video based person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 31, 503-511(2021).
[10] Chen D P, Li H S, Xiao T et al. Video person re-identification with competitive snippet-similarity aggregation and Co-attentive snippet embedding[C], 1169-1178(2018).
[11] Li S, Bak S, Carr P et al. Diversity regularized spatiotemporal attention for video-based person re-identification[C], 369-378(2018).
[12] Hou R B, Ma B P, Chang H et al. VRSTC: occlusion-free video person re-identification[C], 7176-7185(2019).
[13] Zhang Z Y, Ni G X, Xu Y G. Review of the status and development of trajectory prediction technology[J]. Electronic Measurement Technology, 43, 111-116(2020).
[14] Zeng Q F, Liu X M, Feng Y et al. Trajectory optimization of dual beam laser welding robot[J]. Chinese Journal of Lasers, 48, 1802020(2021).
[15] Wang X X, Zhou W, Wang F T et al. Particle streak velocimetry based on defocused imaging[J]. Acta Optica Sinica, 41, 1912004(2021).
[16] Alahi A, Goel K, Ramanathan V et al. Social LSTM: human trajectory prediction in crowded spaces[C], 961-971(2016).
[17] Gupta A, Johnson J, Li F F et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C], 2255-2264(2018).
[18] Subramaniam A, Nambiar A, Mittal A. Co-segmentation inspired attention networks for video-based person re-identification[C], 562-572(2019).
[20] Gu X Q, Chang H, Ma B P et al. Appearance-preserving 3D convolution for video-based person re-identification[M]. Vedaldi A, Bischof H, Brox T, et al. Computer vision-ECCV 2020. Lecture notes in computer science, 12347, 228-243(2020).
[22] Zheng L, Bie Z, Sun Y F et al. MARS: a video benchmark for large-scale person re-identification[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9910, 868-884(2016).
[23] Hirzer M, Beleznai C, Roth P M et al. Person re-identification by descriptive and discriminative classification[C], 91-102(2011).
[24] Wang T Q, Gong S G, Zhu X T et al. Person re-identification by video ranking[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 8692, 688-703(2014).
[25] Zamboni S, Kefato Z T, Girdzijauskas S et al. Pedestrian trajectory prediction with convolutional neural networks[J]. Pattern Recognition, 121, 108252(2022).