• Laser & Optoelectronics Progress
  • Vol. 60, Issue 10, 1010021 (2023)
Xiao Yun*, Kaili Song, Xiaoguang Zhang, and Xinchao Yuan
Author Affiliations
  • School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
  • show less
    DOI: 10.3788/LOP220812 Cite this Article Set citation alerts
    Xiao Yun, Kaili Song, Xiaoguang Zhang, Xinchao Yuan. Occluded Video-Based Person Re-Identification Based on Spatial-Temporal Trajectory Fusion[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010021 Copy Citation Text show less
    References

    [1] Zhang Z Y, Ding J W, Wei H W et al. Multi-level features cascade for person re-identification based on attention mechanism[J]. Laser & Optoelectronics Progress, 58, 2215003(2021).

    [2] Zhang D X, Yuan P C, Wang J. Person reidentification based on multiscale batch feature-discarding network[J]. Laser & Optoelectronics Progress, 59, 1215009(2022).

    [3] Wang F S, Liu F R, Chen J G et al. Multi-loss joint cross-modality person re-identification method integrating attention mechanism[J]. Laser & Optoelectronics Progress, 59, 0810010(2022).

    [4] Li M J, Ji G L. Research progress on video-based person re-identification[J]. Journal of Nanjing Normal University (Natural Science Edition), 43, 120-130(2020).

    [5] Jiang M, Leng B, Song G L et al. Weighted triple-sequence loss for video-based person re-identification[J]. Neurocomputing, 381, 314-321(2020).

    [6] Wu J W, Wang S Y. Statistical-based adaptive background modeling algorithm for grayscale video[J]. Chinese Journal of Lasers, 48, 0309001(2021).

    [7] Li P K, Pan P B, Liu P et al. Hierarchical temporal modeling with mutual distance matching for video based person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 31, 503-511(2021).

    [8] Xu K, Ba J, Kiros R et al. Show, attend and tell: neural image caption generation with visual attention[EB/OL]. https://arxiv.org/abs/1502.03044

    [9] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial networks[EB/OL]. https://arxiv.org/abs/1406.2661

    [10] Chen D P, Li H S, Xiao T et al. Video person re-identification with competitive snippet-similarity aggregation and Co-attentive snippet embedding[C], 1169-1178(2018).

    [11] Li S, Bak S, Carr P et al. Diversity regularized spatiotemporal attention for video-based person re-identification[C], 369-378(2018).

    [12] Hou R B, Ma B P, Chang H et al. VRSTC: occlusion-free video person re-identification[C], 7176-7185(2019).

    [13] Zhang Z Y, Ni G X, Xu Y G. Review of the status and development of trajectory prediction technology[J]. Electronic Measurement Technology, 43, 111-116(2020).

    [14] Zeng Q F, Liu X M, Feng Y et al. Trajectory optimization of dual beam laser welding robot[J]. Chinese Journal of Lasers, 48, 1802020(2021).

    [15] Wang X X, Zhou W, Wang F T et al. Particle streak velocimetry based on defocused imaging[J]. Acta Optica Sinica, 41, 1912004(2021).

    [16] Alahi A, Goel K, Ramanathan V et al. Social LSTM: human trajectory prediction in crowded spaces[C], 961-971(2016).

    [17] Gupta A, Johnson J, Li F F et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C], 2255-2264(2018).

    [18] Subramaniam A, Nambiar A, Mittal A. Co-segmentation inspired attention networks for video-based person re-identification[C], 562-572(2019).

    [19] Liu C T, Wu C W, Wang Y C F et al. Spatially and temporally efficient non-local attention network for video-based person re-identification[EB/OL]. https://arxiv.org/abs/1908.01683

    [20] Gu X Q, Chang H, Ma B P et al. Appearance-preserving 3D convolution for video-based person re-identification[M]. Vedaldi A, Bischof H, Brox T, et al. Computer vision-ECCV 2020. Lecture notes in computer science, 12347, 228-243(2020).

    [21] Hou R B, Chang H, Ma B P et al. Temporal complementary learning for video person re-identification[EB/OL]. https://arxiv.org/abs/2007.09357

    [22] Zheng L, Bie Z, Sun Y F et al. MARS: a video benchmark for large-scale person re-identification[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9910, 868-884(2016).

    [23] Hirzer M, Beleznai C, Roth P M et al. Person re-identification by descriptive and discriminative classification[C], 91-102(2011).

    [24] Wang T Q, Gong S G, Zhu X T et al. Person re-identification by video ranking[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 8692, 688-703(2014).

    [25] Zamboni S, Kefato Z T, Girdzijauskas S et al. Pedestrian trajectory prediction with convolutional neural networks[J]. Pattern Recognition, 121, 108252(2022).

    Xiao Yun, Kaili Song, Xiaoguang Zhang, Xinchao Yuan. Occluded Video-Based Person Re-Identification Based on Spatial-Temporal Trajectory Fusion[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010021
    Download Citation