• Ultrafast Science
  • Vol. 3, Issue 1, 0018 (2023)
Guiyuan Cao1,2, Han Lin2,3,*, and Baohua Jia2,3,*
Author Affiliations
  • 1Centre for Translational Atomaterials, School of Science, Swinburne University of Technology,  John Street, Hawthorn, VIC 3122, Australia.
  • 2The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM), RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia.
  • 3School of Science, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia.
  • show less
    DOI: 10.34133/ultrafastscience.0018 Cite this Article
    Guiyuan Cao, Han Lin, Baohua Jia. Broadband Diffractive Graphene Orbital Angular Momentum Metalens by Laser Nanoprinting[J]. Ultrafast Science, 2023, 3(1): 0018 Copy Citation Text show less
    References

    [1] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45(11):8185.

    [2] Yan Y, Yue Y, Huang H, Ren Y, Ahmed N, Tur M, Dolinar S, Willner A. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum. Opt Lett. 2013;38(19):3930–3933.

    [3] He H, Heckenberg N, Rubinsztein-Dunlop H. Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms. J Mod Opt. 1995;42(1):217–223.

    [4] Voogd RJ, Singh M, Braat JJ. The use of orbital angular momentum of light beams for optical data storage. Proc SPIE. 2004;5380:387–392.

    [5] Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, three-dimensional entanglement for quantum communication. Phys Rev Lett. 2002;89(24):Article 240401.

    [6] Zou X, Mathis W. Scheme for optical implementation of orbital angular momentum beam splitter of a light beam and its application in quantum information processing. Phys Rev A. 2005;71(4):Article 042324.

    [7] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 2013;340(6140):1545–1548.

    [8] Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C. Overcoming the Rayleigh criterion limit with optical vortices. Phys Rev Lett. 2006;97(16):Article 163903.

    [9] MacDonald MP, Paterson L, Volke-Sepulveda K, Arlt J, Sibbett W, Dholakia K. Creation and manipulation of three-dimensional optically trapped structures. Science. 2002;296(5570):1101–1103.

    [10] Padgett M, Bowman R. Tweezers with a twist. Nat Photonics. 2011;5(6):343–348.

    [11] Molina-Terriza G, Torres JP, Torner L. Twisted photons. Nat Phys. 2007;3(5):305–310.

    [12] Beijersbergen MW, Allen L, van der Veen HELO, Woerdman JP. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Commun. 1993;96(1–3):123–132.

    [13] Padgett M, Allen L. Orbital angular momentum exchange in cylindrical-lens mode converters. J Opt B Quantum Semiclassical Opt. 2002;4(2):S17.

    [14] Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas'ko V, Barnett SM, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express. 2004;12(22):5448–5456.

    [15] Arlt J, Dholakia K, Allen L, Padgett MJ. The production of multiringed Laguerre–Gaussian modes by computer-generated holograms. J Mod Opt. 1998;45(6):1231–1237.

    [16] Karimi E, Schulz SA, de Leon I, Qassim H, Upham J, Boyd RW. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci Appl. 2014;3(5):e167.

    [17] Ren H, Briere G, Fang X, Ni P, Sawant R, Héron S, Chenot S, Vézian S, Damilano B, Brändli V, et al. Metasurface orbital angular momentum holography. Nat Commun. 2019;10(1):Article 2986.

    [18] Chung H, Kim D, Choi E, Lee J. E-band metasurface-based orbital angular momentum multiplexing and demultiplexing. Laser Photonics Rev. 2022;16(6):Article 2100456.

    [19] Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science. 2011;334(6054):333–337.

    [20] Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013;339(6125):Article 1232009.

    [21] Wang S, Wu PC, Su V-C, Lai Y-C, Hung Chu C, Chen J-W, Lu S-H, Chen J, Xu B, Kuan C-H, et al. Broadband achromatic optical metasurface devices. Nat Commun. 2017;8(1):Article 187.

    [22] Chen WT, Zhu AY, Sisler J, Huang YW, Yousef KMA, Lee E, Qiu CW, Capasso F. Broadband achromatic metasurface-refractive optics. Nano Lett. 2018;18(12):7801–7808.

    [23] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352(6290):1190–1194.

    [24] Wang Y, Chen Q, Yang W, Ji Z, Jin L, Ma X, Song Q, Boltasseva A, Han J, Shalaev VM, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun. 2021;12(1):Article 5560.

    [25] Hu D, Wang X, Feng S, Ye J, Sun W, Kan Q, Klar PJ, Zhang Y. Ultrathin terahertz planar elements. Adv Opt Mater. 2013;1(2):186–191.

    [26] Khorasaninejad M, Shi Z, Zhu AY, Chen WT, Sanjeev V, Zaidi A, Capasso F. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 2017;17(3):1819–1824.

    [27] Lin H, Zhang Z, Zhang H, Lin K-T, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu C-W, et al. Engineering van der Waals materials for advanced metaphotonics. Chem Rev. 2022;122(19):15204–15355.

    [28] Lin H, Xu ZQ, Cao G, Zhang Y, Zhou J, Wang Z, Wan Z, Liu Z, Loh KP, Qiu C-W, et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light Sci Appl. 2020;9(1):Article 137.

    [29] Lin H, Lin KT, Yang T, Jia B. Graphene multilayer photonic metamaterials: Fundamentals and applications. Adv Mater Technol. 2021;6(5):2000963.

    [30] Yang T, Lin H, Jia B. Ultrafast direct laser writing of 2D materials for multifunctional photonics devices. Chin Opt Lett. 2020;18(2):Article 023601.

    [31] Zheng X, Jia B, Lin H, Qiu L, Li D, Gu M. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat Commun. 2015;6(1):Article 8433.

    [32] Cao G, Lin H, Fraser S, Zheng X, del Rosal B, Gan Z, Wei S, Gan X, Jia B. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments. ACS Appl Mater Interfaces. 2019;11(22):20298–20303.

    [33] Wei S, Cao G, Lin H, Mu H, Liu W, Yuan X, Somekh M, Jia B. High tolerance detour-phase graphene-oxide flat lens. Photonics Res. 2021;9(12):2454–2463.

    [34] Qu Y, Wu J, Zhang Y, Jia L, Liang Y, Jia B, Moss DJ. Analysis of four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films. J Lightwave Technol. 2021;39(9):2902–2910.

    [35] Wu J, Jia L, Zhang Y, Qu Y, Jia B, Moss DJ. Graphene oxide for integrated photonics and flat optics. Adv Mater. 2021;33(3):2006415.

    [36] Wu J, Lin H, Moss DJ, Loh KP, Jia B. Graphene oxide for photonics, electronics and optoelectronics. Nat Rev Chem. 2023.

    [37] Li X, Ren H, Chen X, Liu J, Li Q, Li C, Xue G, Jia J, Cao L, Sahu A, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun. 2015;6(1):Article 6984.

    [38] Cao G, Gan X, Lin H, Jia B. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron Adv. 2018;1(7):Article 180012.

    [39] Lin H, Sturmberg BCP, Lin KT, Yang Y, Zheng X, Chong TK, de Sterke CM, Jia B. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat Photonics. 2019;13(4):270–276.

    [40] Lin K-T, Lin H, Yang T, Jia B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat Commun. 2020;11(1):Article 1389.

    [41] Wei S, Cao G, Lin H, Yuan X, Somekh M, Jia B. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano. 2021;15(3):4769–4776.

    [42] Li X, Wei S, Cao G, Lin H, Zhao Y, Jia B. Graphene metalens for particle nanotracking. Photon Res. 2020;8(8):1316–1322.

    [43] Wang H, Liu L, Zhou C, Xu J, Zhang M, Teng S, Cai Y. Vortex beam generation with variable topological charge based on a spiral slit. Nano. 2019;8(2):317–324.

    [44] Brown BR, Lohmann AW. Complex spatial filtering with binary masks. Appl Opt. 1966;5(6):967–969.

    [45] Min C, Liu J, Lei T, Si G, Xie Z, Lin J, du L, Yuan X. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photonics Rev. 2016;10(6):978–985.

    [46] Poon T-C. Digital holography and three-dimensional display: Principles and applications. Berlin/Heidelberg (Germany): Springer Science & Business Media; 2006.

    [47] Yu Y-H, Tian ZN, Jiang T, Niu LG, Gao BR. Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing. Opt Commun. 2016;362:69–72.

    [48] Gu M. Advanced optical imaging theory. Berlin/Heidelberg (Germany): Springer Science & Business Media; 2000. vol. 75.

    [49] Wang Y, Yun W, Jacobsen C. Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature. 2003;424(6944):50–53.

    [50] Lin H, Jia B, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt Lett. 2011;36(3):406–408.

    [51] Jin Z, Cao G, Wang H, Lin H, Jia B, Qiu CW. Broadband angular momentum cascade via a multifocal graphene vortex generator. Chin Opt Lett. 2022;20(10):Article 103602.

    [52] Lin Z, Hong M. Femtosecond laser precision engineering: From micron, submicron, to nanoscale. Ultrafast Sci. 2021;2021:Article 9783514.

    [53] Zhang Y, Jiang Q, Long M, Han R, Cao K, Zhang S, Feng D, Jia T, Sun Z, Qiu J, et al. Femtosecond laser-induced periodic structures: Mechanisms, techniques, and applications. Opto-Electron Sci. 2022;1:Article 220005.

    [54] Lin Z, Ji L, Hong M. Approximately 30 nm nanogroove formation on single crystalline silicon surface under pulsed nanosecond laser irradiation. Nano Lett. 2022;22(17):7005–7010.

    Guiyuan Cao, Han Lin, Baohua Jia. Broadband Diffractive Graphene Orbital Angular Momentum Metalens by Laser Nanoprinting[J]. Ultrafast Science, 2023, 3(1): 0018
    Download Citation