[1] Chen J P, Wang L K, Wang M H S et al[M]. Remediation of heavy metals in the environment(2016).
[2] Ansari M I, Malik A. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater[J]. Bioresource Technology, 98, 3149-3153(2007).
[3] Nordberg G F, Fowler B A, Nordberg M et al[M]. Handbook on the toxicology of metals(1979).
[4] Calderón J, Navarro M E, Jimenez-Capdeville M E et al. Exposure to arsenic and lead and neuropsychological development in Mexican children[J]. Environmental Research, 85, 69-76(2001).
[5] Ravikumar R, Chen L H, Hui M M X et al. Ion-imprinted chitosan-based interferometric sensor for selective detection of heavy metal ions[J]. Journal of Lightwave Technology, 37, 2778-2783(2019).
[7] Jarzynska G, Falandysz J. The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 46, 569-573(2011).
[8] Pehlivan E, Cetin S. Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV-visible spectrophotometer[J]. Journal of Hazardous Materials, 163, 448-453(2009).
[9] Chen X P, Han C, Cheng H Y et al. Rapid speciation analysis of mercury in seawater and marine fish by cation exchange chromatography hyphenated with inductively coupled plasma mass spectrometry[J]. Journal of Chromatography A, 1314, 86-93(2013).
[10] Kumar B N, Kanchi S, Sabela M I et al. Spectrophotometric determination of nickel (II) in waters and soils: novel chelating agents and their biological applications supported by DFT method[J]. Karbala International Journal of Modern Science, 2, 239-250(2016).
[11] Gao Y, Shi Z M, Zong Q X et al. Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry after dissolution with formic acid[J]. Analytica Chimica Acta, 812, 6-11(2014).
[13] Long F, Gao C, Shi H C et al. Reusable evanescent wave DNA biosensor for rapid, highly sensitive, and selective detection of mercury ions[J]. Biosensors and Bioelectronics, 26, 4018-4023(2011).
[14] Wang X D, Wolfbeis O S. Fiber-optic chemical sensors and biosensors (2013-2015)[J]. Analytical Chemistry, 88, 203-227(2016).
[15] Dey S, Santra S, Midya A et al. Synthesis of CuxNi(1-x)O coral-like nanostructures and their application in the design of a reusable toxic heavy metal ion sensor based on an adsorption-mediated electrochemical technique[J]. Environmental Science: Nano, 4, 191-202(2017).
[16] Shin J, Hong Y, Wu M L et al. A wide detection range mercury ion sensor using Si MOSFET having single-walled carbon nanotubes as a sensing layer[J]. IEEE Electron Device Letters, 38, 959-962(2017).
[17] Yoon S, Miller E, He Q W et al. A bright and specific fluorescent sensor for mercury in water, cells, and tissue[J]. Angewandte Chemie International Edition, 46, 6658-6661(2007).
[19] Chen L, Leng Y K, Liu B et al. Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode- no core-singlemode coupler for Staphylococcus aureus detection[J]. Sensors and Actuators B Chemical, 320, 128283(2020).
[20] Wang Y, Gan T T, Zhao N J et al. Rapid detection method of heavy metal chromium in water by enrichment of chlorella pyrenoidosa and XRF spectrometry[J]. Acta Optica Sinica, 42, 2430004(2022).
[21] Chen L, Leng Y K, Qiu S et al. Ultrahigh-sensitivity label-free singlemode- tapered no core-singlemode fiber immunosensor for Listeria monocytogenes detection[J]. Sensors and Actuators B: Chemical, 376, 132930(2023).
[22] Wu Q, Qu Y W, Liu J et al. Singlemode-multimode-singlemode fiber structures for sensing applications: a review[J]. IEEE Sensors Journal, 21, 12734-12751(2021).
[23] Han D, Lim S Y, Kim B J et al. Mercury(ii) detection by SERS based on a single gold microshell[J]. Chemical Communications, 46, 5587-5589(2010).
[24] Raghunandhan R, Chen L H, Long H Y et al. Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection[J]. Sensors and Actuators B: Chemical, 233, 31-38(2016).
[25] Ji W B, Yap S H K, Panwar N et al. Detection of low-concentration heavy metal ions using optical microfiber sensor[J]. Sensors and Actuators B: Chemical, 237, 142-149(2016).
[26] Yap S H K, Chien Y H, Tan R et al. An advanced hand-held microfiber-based sensor for ultrasensitive lead ion detection[J]. ACS Sensors, 3, 2506-2512(2018).
[27] Ma Y, Zheng W L, Zhang Y N et al. Optical fiber SPR sensor with surface ion imprinting for highly sensitive and highly selective Ni2+ detection[J]. IEEE Transactions on Instrumentation and Measurement, 70, 7006006(2021).
[28] Lee J H, Kim B S, Lee J C et al. Removal of Cu++ ions from aqueous Cu-EDTA solution using ZnO nanopowder[J]. Materials Science Forum, 486/487, 510-513(2005).
[29] Repo E, Warchoł J K, Bhatnagar A et al. Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials[J]. Journal of Colloid and Interface Science, 358, 261-267(2011).
[30] Jal P K, Patel S, Mishra B K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions[J]. Talanta, 62, 1005-1028(2004).
[31] Gu B B, Yin M J, Zhang A P et al. Fiber-optic metal ion sensor based on thin-core fiber modal interferometer with nanocoating self-assembled via hydrogen bonding[J]. Sensors and Actuators B: Chemical, 160, 1174-1179(2011).