• Nano-Micro Letters
  • Vol. 16, Issue 1, 194 (2024)
Dujuan Li1,†, Yuxuan Guo1,†, Chenxing Zhang, Xianhe Chen..., Weisheng Zhang, Shilin Mei* and Chang-Jiang Yao**|Show fewer author(s)
Author Affiliations
  • State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01404-6 Cite this Article
    Dujuan Li, Yuxuan Guo, Chenxing Zhang, Xianhe Chen, Weisheng Zhang, Shilin Mei, Chang-Jiang Yao. Unveiling Organic Electrode Materials in Aqueous Zinc-Ion Batteries: From Structural Design to Electrochemical Performance[J]. Nano-Micro Letters, 2024, 16(1): 194 Copy Citation Text show less
    References

    [1] R. Bird, Z.J. Baum, X. Yu, J. Ma et al., The regulatory environment for lithium-ion battery recycling. ACS Energy Lett. 7, 736–740 (2022).

    [2] I. Huang, Y. Zhang, H.M. Arafa, S. Li, A. Vazquez-Guardado et al., High performance dual-electrolyte magnesium–iodine batteries that can harmlessly resorb in the environment or in the body. Energy Environ. Sci. 15, 4095–4108 (2022).

    [3] Y. Wang, B. Wang, J. Zhang, D. Chao, J. Ni et al., Conversion electrochemistry of copper selenides for robust and energetic aqueous batteries. Carbon Energy 5, e261 (2023).

    [4] H. Zhang, G. Guo, H. Adenusi, B. Qin, H. Li et al., Advances and issues in developing intercalation graphite cathodes for aqueous batteries. Mater. Today 53, 162–172 (2022).

    [5] Z. Yang, B. Wang, Y. Chen, W. Zhou, H. Li et al., Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS2 for sulfur-based aqueous batteries. Natl. Sci. Rev. 10, nwac268 (2023).

    [6] Z. Chen, F. Mo, T. Wang, Q. Yang, Z. Huang et al., Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy Environ. Sci. 14, 2441–2450 (2021).

    [7] C. Zhu, J. Zhou, Z. Wang, Y. Zhou, X. He et al., Phase diagrams guided design of low-temperature aqueous electrolyte for Zn metal batteries. Chem. Eng. J. 454, 140413 (2023).

    [8] Z. Li, Y. Liao, Y. Wang, J. Cong, H. Ji et al., A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries. Energy Storage Mater. 56, 174–182 (2023).

    [9] R. Wang, M. Shi, L. Li, Y. Zhao, L. Zhao et al., In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem. Eng. J. 451, 138652 (2023).

    [10] K. Zhu, Z. Li, Z. Sun, P. Liu, T. Jin et al., Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 18, 2107662 (2022).

    [11] M. Shi, R. Wang, J. He, L. Zhao, K. Dai et al., Multiple redox-active cyano-substituted organic compound integrated with MXene for high-performance flexible aqueous K-ion battery. Chem. Eng. J. 450, 138238 (2022).

    [12] X. Zhang, T. Xiong, B. He, S. Feng, X. Wang et al., Recent advances and perspectives in aqueous potassium-ion batteries. Energy Environ. Sci. 15, 3750–3774 (2022).

    [13] J. Chen, S. Lei, S. Zhang, C. Zhu, Q. Liu et al., Dilute aqueous hybrid electrolyte with regulated core-shell-solvation structure endows safe and low-cost potassium-ion energy storage devices. Adv. Funct. Mater. 33, 2215027 (2023).

    [14] K.W. Leong, W. Pan, Y. Wang, S. Luo, X. Zhao et al., Reversibility of a high-voltage, Cl– regulated, aqueous Mg metal battery enabled by a water-in-salt electrolyte. ACS Energy Lett. 7, 2657–2666 (2022).

    [15] M. Deng, L. Wang, B. Vaghefinazari, W. Xu, C. Feiler et al., High-energy and durable aqueous magnesium batteries: recent advances and perspectives. Energy Storage Mater. 43, 238–247 (2021).

    [16] C. Yan, C. Lv, B.-E. Jia, L. Zhong, X. Cao et al., Reversible Al metal anodes enabled by amorphization for aqueous aluminum batteries. J. Am. Chem. Soc. 144, 11444–11455 (2022).

    [17] G.R. Pastel, Y. Chen, T.P. Pollard, M.A. Schroeder, M.E. Bowden et al., A sobering examination of the feasibility of aqueous aluminum batteries. Energy Environ. Sci. 15, 2460–2469 (2022).

    [18] H.-G. Wang, Q. Wu, L. Cheng, G. Zhu, The emerging aqueous zinc-organic battery. Coord. Chem. Rev. 472, 214772 (2022).

    [19] Z. Zhang, X. Yang, P. Li, Y. Wang, X. Zhao et al., Biomimetic dendrite-free multivalent metal batteries. Adv. Mater. 34, 2206970 (2022).

    [20] Y. Chen, K. Fan, Y. Gao, C. Wang, Challenges and perspectives of organic multivalent metal-ion batteries. Adv. Mater. 34, 2200662 (2022).

    [21] X. Yang, X. Wang, Y. Xiang, L. Ma, W. Huang, Asymmetric electrolytes design for aqueous multivalent metal ion batteries. Nano-Micro Lett. 16, 51 (2023).

    [22] C. Wei, L. Tan, Y. Zhang, B. Xi, S. Xiong et al., Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries. Energy Storage Mater. 48, 447–457 (2022).

    [23] C. Wei, L. Tan, Y. Zhang, Z. Wang, J. Feng et al., Towards better Mg metal anodes in rechargeable Mg batteries: challenges, strategies, and perspectives. Energy Storage Mater. 52, 299–319 (2022).

    [24] Q. He, H. Wang, J. Bai, Y. Liao, S. Wang et al., Bilayered nanostructured V2O5 nH2O xerogel constructed 2D nano-papers for efficient aqueous zinc/magnesium ion storage. J. Colloid Interface Sci. 662, 490–504 (2024).

    [25] Y. Man, P. Jaumaux, Y. Xu, Y. Fei, X. Mo et al., Research development on electrolytes for magnesium-ion batteries. Sci. Bull. 68, 1819–1842 (2023).

    [26] J. Li, K.S. Hui, S. Ji, C. Zha, C. Yuan et al., Electrodeposition of a dendrite-free 3D Al anode for improving cycling of an aluminum–graphite battery. Carbon Energy 4, 155–169 (2022).

    [27] X. Li, Y. Tang, C. Li, H. Lv, H. Fan et al., Relieving hydrogen evolution and anodic corrosion of aqueous aluminum batteries with hybrid electrolytes. J. Mater. Chem. A 10, 4739–4748 (2022).

    [28] E. Hu, B.E. Jia, Q. Zhu, J. Xu, X.J. Loh et al., Engineering high voltage aqueous aluminum-ion batteries. Small (2024).

    [29] H. Gu, X. Yang, S. Chen, W. Zhang, H.Y. Yang et al., Oxygen vacancies boosted proton intercalation kinetics for aqueous aluminum–manganese batteries. Nano Lett. 23, 11842–11849 (2023).

    [30] X. Chen, H. Zhang, J.-H. Liu, Y. Gao, X. Cao et al., Vanadium-based cathodes for aqueous zinc-ion batteries: mechanism, design strategies and challenges. Energy Storage Mater. 50, 21–46 (2022).

    [31] B. Luo, Y. Wang, L. Sun, S. Zheng, G. Duan et al., Boosting Zn2+ kinetics via the multifunctional pre-desolvation interface for dendrite-free Zn anodes. J. Energy Chem. 77, 632–641 (2023).

    [32] Y. Gao, J. Yin, X. Xu, Y. Cheng, Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density. J. Mater. Chem. A 10, 9773–9787 (2022).

    [33] X. Chen, X. Hu, Y. Chen, X. Cao, Y. Huang et al., Ultrastable hydrated vanadium dioxide cathodes for high-performance aqueous zinc ion batteries with H+/Zn2+ Co-insertion mechanism. J. Mater. Chem. A 10, 22194–22204 (2022).

    [34] M. Li, Y. Zhang, J. Hu, X. Wang, J. Zhu et al., Universal multifunctional hydrogen bond network construction strategy for enhanced aqueous Zn2+/proton hybrid batteries. Nano Energy 100, 107539 (2022).

    [35] Y. Xiang, L. Zhou, P. Tan, S. Dai, Y. Wang et al., Continuous amorphous metal–organic frameworks layer boosts the performance of metal anodes. ACS Nano 17, 19275–19287 (2023).

    [36] H. Lv, J. Wang, X. Gao, Y. Wang, Y. Shen et al., Electrochemical performance and mechanism of bimetallic organic framework for advanced aqueous Zn ion batteries. ACS Appl. Mater. Interfaces 15, 47094–47102 (2023).

    [37] S. Qiao, J. Zhou, D. Zhao, G. Sun, W. Zhang et al., Constructing amphipathic molecular layer to assists de-solvation process for dendrite-free Zn anode. J. Colloid Interface Sci. 653, 1085–1093 (2024).

    [38] L. Tao, K. Guan, R. Yang, Z. Guo, L. Wang et al., Dual-protected zinc anodes for long-life aqueous zinc ion battery with bifunctional interface constructed by zwitterionic surfactants. Energy Storage Mater. 63, 102981 (2023).

    [39] Z. Zheng, S. Guo, M. Yan, Y. Luo, F. Cao, A functional Janus Ag nanowires/bacterial cellulose separator for high-performance dendrite-free zinc anode under harsh conditions. Adv. Mater. 35, e2304667 (2023).

    [40] J. Li, Z. Liu, S. Han, P. Zhou, B. Lu et al., Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 15, 237 (2023).

    [41] Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15, 205 (2023).

    [42] F. Niu, Z. Bai, J. Chen, Q. Gu, X. Wang et al., In situ molecular engineering strategy to construct hierarchical MoS2 double-layer nanotubes for ultralong lifespan “rocking-chair” aqueous zinc-ion batteries. ACS Nano 18, 6487–6499 (2024).

    [43] M. Fang, T. Yang, O. Sheng, T. Shen, Z. Huang et al., A trinity strategy enabled by iodine-loaded nitrogen-boron-doped carbon protective layer for dendrite-free zinc-ion batteries. J. Colloid Interface Sci. 661, 987–999 (2024).

    [44] J. Wu, B. Song, Z. Ge, X. Xiao, W. Deng et al., Bifunctional electrolyte additive for stable Zn anode: reconstructing solvated structure and guiding oriented growth of Zn. Energy Storage Mater. 63, 103000 (2023).

    [45] R. Wang, Q. Ma, L. Zhang, Z. Liu, J. Wan et al., An aqueous electrolyte regulator for highly stable zinc anode under –35 to 65 °C. Adv. Energy Mater. 13, 2302543 (2023).

    [46] C. You, R. Wu, X. Yuan, L. Liu, J. Ye et al., An inexpensive electrolyte with double-site hydrogen bonding and a regulated Zn2+ solvation structure for aqueous Zn-ion batteries capable of high-rate and ultra-long low-temperature operation. Energy Environ. Sci. 16, 5096–5107 (2023).

    [47] Z. Liu, R. Wang, Y. Gao, S. Zhang, J. Wan et al., Low-cost multi-function electrolyte additive enabling highly stable interfacial chemical environment for highly reversible aqueous zinc ion batteries. Adv. Funct. Mater. 33, 2308463 (2023).

    [48] X. Zhang, J. Chen, H. Cao, X. Huang, Y. Liu et al., Efficient suppression of dendrites and side reactions by strong electrostatic shielding effect via the additive of Rb2SO4 for anodes in aqueous zinc-ion batteries. Small 19, 2303906 (2023).

    [49] Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 (2022).

    [50] J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nano-Micro Lett. 15, 97 (2023).

    [51] Z. Li, J. Tan, X. Zhu, S. Xie, H. Fang et al., High capacity and long-life aqueous zinc-ion battery enabled by improving active sites utilization and protons insertion in polymer cathode. Energy Storage Mater. 51, 294–305 (2022).

    [52] T. Sun, Z. Yi, W. Zhang, Q. Nian, H.J. Fan et al., Dynamic balance of partial charge for small organic compound in aqueous zinc-organic battery. Adv. Funct. Mater. 33, 2306675 (2023).

    [53] M. Yang, Y. Hao, B. Wang, Y. Wang, L. Zheng et al., Steric hindrance modulation of hexaazatribenzanthraquinone isomers for high capacity and wide-temperature-range aqueous proton battery. Natl. Sci. Rev. (2024).

    [54] T. Sun, W. Zhang, Q. Nian, Z. Tao, Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery. Chem. Eng. J. 452, 139324 (2023).

    [55] W. Ma, P. Zhang, L. Tang, M. Ge, Y. Qi et al., Towards durable and high-rate rechargeable aluminum dual-ion batteries via a crosslinked diphenylphenazine-based conjugated polymer cathode. Chemsuschem (2024).

    [56] S. Zheng, D. Shi, D. Yan, Q. Wang, T. Sun et al., Orthoquinone–based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61, 2117511 (2022).

    [57] S. Bian, Y. Yang, S. Liu, F. Ye, H. Tang et al., Recent progress of the cathode material design for aqueous Zn-organic batteries. Chem. Eur. J. 30, e2303917 (2024).

    [58] Y. Tong, Y. Wei, A. Song, Y. Ma, J. Yang, Organic electrode materials for dual-ion batteries. Chemsuschem (2023).

    [59] G. Son, V. Ri, D. Shin, Y. Jung, C.B. Park et al., Self-reinforced inductive effect of symmetric bipolar organic molecule for high-performance rechargeable batteries. Adv. Sci. 10, 2301993 (2023).

    [60] H. Park, H. Kye, J.-S. Lee, Y.-C. Joo, D.J. Min et al., Indolocarbazole-based small molecule cathode-active material exhibiting double redox for high-voltage Li-organic batteries. Energy Environ. Mater. (2024).

    [61] C. Tang, B. Wei, W. Tang, Y. Hong, M. Guo et al., Carbon-coating small-molecule organic bipolar electrodes for symmetric Li-dual-ion batteries. Chem. Eng. J. 474, 145114 (2023).

    [62] D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li et al., Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 12, 2102707 (2022).

    [63] L. Yan, C. Zhao, Y. Sha, Z. Li, T. Liu et al., Electrochemical redox behavior of organic quinone compounds in aqueous metal ion electrolytes. Nano Energy 73, 104766 (2020).

    [64] Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, eaao1761 (2018).

    [65] Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang et al., An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem. Int. Ed. 57, 11737–11741 (2018).

    [66] Z. Lin, H.-Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12, 4424 (2021).

    [67] K.W. Nam, H. Kim, Y. Beldjoudi, T.W. Kwon, D.J. Kim et al., Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries. J. Am. Chem. Soc. 142, 2541–2548 (2020).

    [68] Y. Wang, C. Wang, Z. Ni, Y. Gu, B. Wang et al., Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc–organic batteries. Adv. Mater. 32, 2000338 (2020).

    [69] J. Kumankuma-Sarpong, S. Tang, W. Guo, Y. Fu, Naphthoquinone-based composite cathodes for aqueous rechargeable zinc-ion batteries. ACS Appl. Mater. Interfaces 13, 4084–4092 (2021).

    [70] T. Sun, W. Zhang, Q. Nian, Z. Tao, Molecular engineering design for high-performance aqueous zinc-organic battery. Nano-Micro Lett. 15, 36 (2023).

    [71] K. Huang, Z. Yao, K. Sun, K. Chen, J. Hu et al., Electrolyte formulation to enable ultra-stable aqueous Zn-organic batteries. J. Power Sources 482, 228904 (2021).

    [72] H. Zhang, Y. Fang, F. Yang, X. Liu, X. Lu, Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage. Energy Environ. Sci. 13, 2515–2523 (2020).

    [73] L. Cheng, Y. Liang, Q. Zhu, D. Yu, M. Chen et al., Bio-inspired isoalloxazine redox moieties for rechargeable aqueous zinc-ion batteries. Chem. Asian J. 15, 1290–1295 (2020).

    [74] J. Wei, P. Zhang, T. Shen, Y. Liu, T. Dai et al., Supramolecule-based excluded-volume electrolytes and conjugated sulfonamide cathodes for high-voltage and long-cycling aqueous zinc-ion batteries. ACS Energy Lett. 8, 762–771 (2023).

    [75] Q. Wang, Y. Liu, P. Chen, Phenazine-based organic cathode for aqueous zinc secondary batteries. J. Power Sources 468, 228401 (2020).

    [76] H. Zhang, S. Xie, Z. Cao, D. Xu, L. Wang et al., Extended π-conjugated system in organic cathode with active C═N bonds for driving aqueous zinc-ion batteries. ACS Appl. Energy Mater. 4, 655–661 (2021).

    [77] Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Proton insertion chemistry of a zinc–organic battery. Angew. Chem. Int. Ed. 59(12), 4920–4924 (2020).

    [78] Z. Ye, S. Xie, Z. Cao, L. Wang, D. Xu et al., High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater. 37, 378–386 (2021).

    [79] S. Li, J. Shang, M. Li, M. Xu, F. Zeng et al., Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life. Adv. Mater. 35, e2207115 (2023).

    [80] X. Wang, Y. Liu, Z. Wei, J. Hong, H. Liang et al., MXene-boosted imine cathodes with extended conjugated structure for aqueous zinc-ion batteries. Adv. Mater. 34, 2206812 (2022).

    [81] Y. Chen, J. Li, Q. Zhu, K. Fan, Y. Cao et al., Two-dimensional organic supramolecule via hydrogen bonding and π–π stacking for ultrahigh capacity and long-life aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61(37), 202116289 (2022).

    [82] J. Chu, Z. Liu, J. Yu, L. Cheng, H.-G. Wang et al., Boosting H+ storage in aqueous zinc ion batteries via integrating redox-active sites into hydrogen-bonded organic frameworks with strong π-π stacking. Angew. Chem. Int. Ed. 63, 2314411 (2024).

    [83] S. Niu, Y. Wang, J. Zhang, Y. Wang, Y. Tian et al., Engineering low-cost organic cathode for aqueous rechargeable battery and demonstrating the proton intercalation mechanism for pyrazine energy storage unit. Small, e2309022 (2023).

    [84] Y. Gao, G. Li, F. Wang, J. Chu, P. Yu et al., A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater. 40, 31–40 (2021).

    [85] S. Menart, K. Pirnat, D. Pahovnik, R. Dominko, Triquinoxalinediol as organic cathode material for rechargeable aqueous zinc-ion batteries. J. Mater. Chem. A 11, 10874–10882 (2023).

    [86] J. Li, L. Huang, H. Lv, J. Wang, G. Wang et al., Novel organic cathode with conjugated N-heteroaromatic structures for high-performance aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 14, 38844–38853 (2022).

    [87] H. Peng, J. Xiao, Z. Wu, L. Zhang, Y. Geng et al., N-heterocycles extended π-conjugation enables ultrahigh capacity, long-lived, and fast-charging organic cathodes for aqueous zinc batteries. CCS Chem. 5, 1789–1801 (2023).

    [88] W. Li, H. Xu, H. Zhang, F. Wei, L. Huang et al., Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries. Nat. Commun. 14, 5235 (2023).

    [89] X. Geng, H. Ma, F. Lv, K. Yang, J. Ma et al., Ultrastable organic cathode derived by pigment/rGO for aqueous zinc-ion batteries. Chem. Eng. J. 446, 137289 (2022).

    [90] L. Lin, Z. Lin, J. Zhu, K. Wang, W. Wu et al., A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries. Energy Environ. Sci. 16, 89–96 (2023).

    [91] N. Merukan Chola, R.K. Nagarale, TCNQ confined in porous organic structure as cathode for aqueous zinc battery. J. Electrochem. Soc. 167, 100552 (2020).

    [92] Q. Wang, X. Xu, G. Yang, Y. Liu, X. Yao, An organic cathode with tailored working potential for aqueous Zn-ion batteries. Chem. Commun. 56, 11859–11862 (2020).

    [93] Z. Song, L. Miao, H. Duan, L. Ruhlmann, Y. Lv et al., Anionic co-insertion charge storage in dinitrobenzene cathodes for high-performance aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61, 2208821 (2022).

    [94] W. Wang, Y. Tang, J. Liu, H. Li, R. Wang et al., Boosting the zinc storage of a small-molecule organic cathode by a desalinization strategy. Chem. Sci. 14, 9033–9040 (2023).

    [95] M. Tang, Q. Zhu, P. Hu, L. Jiang, R. Liu et al., Ultrafast rechargeable aqueous zinc-ion batteries based on stable radical chemistry. Adv. Funct. Mater. 31, 2102011 (2021).

    [96] H. Glatz, E. Lizundia, F. Pacifico, D. Kundu, An organic cathode based dual-ion aqueous zinc battery enabled by a cellulose membrane. ACS Appl. Energy Mater. 2, 1288–1294 (2019).

    [97] M.H. Lee, G. Kwon, H. Lim, J. Kim, S.J. Kim et al., High-energy and long-lasting organic electrode for a rechargeable aqueous battery. ACS Energy Lett. 7, 3637–3645 (2022).

    [98] U. Mittal, F. Colasuonno, A. Rawal, M. Lessio, D. Kundu, A highly stable 1.3V organic cathode for aqueous zinc batteries designed in situ by solid-state electrooxidation. Energy Storage Mater. 46, 129–137 (2022).

    [99] Y. Wang, S. Qiu, D. He, J. Guo, M. Zhao et al., A high-potential bipolar phenothiazine derivative cathode for aqueous zinc batteries. ChemSusChem 16, 2300658 (2023).

    [100] H. Dai, Y. Chen, Y. Cao, M. Fu, L. Guan et al., Structural isomers: small change with big difference in anion storage. Nano-Micro Lett. 16, 13 (2023).

    [101] H. Alt, H. Binder, A. Köhling, G. Sandstede, Investigation into the use of quinone compounds-for battery cathodes. Electrochim. Acta 17, 873–887 (1972).

    [102] Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017).

    [103] D. Ma, H. Zhao, F. Cao, H. Zhao, J. Li et al., A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries. Chem. Sci. 13, 2385–2390 (2022).

    [104] Q.-Q. Sun, T. Sun, J.-Y. Du, K. Li, H.-M. Xie et al., A sulfur heterocyclic quinone cathode towards high-rate and long-cycle aqueous Zn-organic batteries. Adv. Mater. 35, 2301088 (2023).

    [105] K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144, 11129–11137 (2022).

    [106] Y. Chen, H. Dai, K. Fan, G. Zhang, M. Tang et al., A recyclable and scalable high-capacity organic battery. Angew. Chem. Int. Ed. 62, 2302539 (2023).

    [107] Y. Zhong, Y. Li, J. Meng, X. Lin, Z. Huang et al., Boosting the cyclability of tetracyanoquinodimethane (TCNQ) as cathode material in aqueous battery with high valent cation. Energy Storage Mater. 43, 492–498 (2021).

    [108] S. Perticarari, E. Grange, T. Doizy, Y. Pellegrin, E. Quarez et al., Full organic aqueous battery based on TEMPO small molecule with millimeter-thick electrodes. Chem. Mater. 31, 1869–1880 (2019).

    [109] N. Patil, J. Palma, R. Marcilla, Macromolecular engineering of poly(catechol) cathodes towards high-performance aqueous zinc-polymer batteries. Polymers 13, 1673 (2021).

    [110] T. Sun, Z.-J. Li, Y.-F. Zhi, Y.-J. Huang, H.J. Fan et al., Poly(2, 5-dihydroxy-1, 4-benzoquinonyl sulfide) as an efficient cathode for high-performance aqueous zinc–organic batteries. Adv. Funct. Mater. 31, 2010049 (2021).

    [111] G. Dawut, Y. Lu, L. Miao, J. Chen, High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode. Inorg. Chem. Front. 5, 1391–1396 (2018).

    [112] D. Fei Ye, Q. Liu, D. Hongliang Dong, K. Guan, Z. Chen et al., Organic zinc-ion battery: planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics. Angew. Chem. Int. Ed. 61, e202214244 (2022).

    [113] H. Zhang, D. Xu, L. Wang, Z. Ye, B. Chen et al., A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 17, e2100902 (2021).

    [114] X. Wang, J. Xiao, W. Tang, Hydroquinone versus pyrocatechol pendants twisted conjugated polymer cathodes for high-performance and robust aqueous zinc-ion batteries. Adv. Funct. Mater. 32, 2108225 (2022).

    [115] Z. Tie, S. Deng, H. Cao, M. Yao, Z. Niu et al., A symmetric all-organic proton battery in mild electrolyte. Angew. Chem. Int. Ed. 61, 2115180 (2022).

    [116] X. Yue, H. Liu, P. Liu, Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries. Chem. Commun. 55, 1647–1650 (2019).

    [117] P. Liu, R. Lv, Y. He, B. Na, B. Wang et al., An integrated, flexible aqueous Zn-ion battery with high energy and power densities. J. Power Sources 410–411, 137–142 (2019).

    [118] H. Yi, Y. Ma, S. Zhang, B. Na, R. Zeng et al., Robust aqueous Zn-ion fiber battery based on high-strength cellulose yarns. ACS Sustainable Chem. Eng. 7, 18894–18900 (2019).

    [119] W. Wu, H.-Y. Shi, Z. Lin, X. Yang, C. Li et al., The controlled quinone introduction and conformation modification of polyaniline cathode materials for rechargeable aqueous zinc-polymer batteries. Chem. Eng. J. 419, 129659 (2021).

    [120] F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28, 1804975 (2018).

    [121] H.-Y. Shi, Y.-J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57, 16359–16363 (2018).

    [122] S. Li, G. Zhang, G. Jing, J. Kan, Aqueous zinc–polyaniline secondary battery. Synth. Met. 158, 242–245 (2008).

    [123] L. Yan, Q. Zhu, Y. Qi, J. Xu, Y. Peng et al., Towards high-performance aqueous zinc batteries via a semi-conductive bipolar-type polymer cathode. Angew. Chem. Int. Ed. 61, e202211107 (2022).

    [124] Y. Zhao, Y. Huang, R. Chen, F. Wu, L. Li, Tailoring double-layer aromatic polymers with multi-active sites towards high performance aqueous Zn-organic batteries. Mater. Horiz. 8, 3124–3132 (2021).

    [125] K. Koshika, N. Sano, K. Oyaizu, H. Nishide, An aqueous, electrolyte-type, rechargeable device utilizing a hydrophilic radical polymer-cathode. Macromol. Chem. Phys. 210, 1989–1995 (2009).

    [126] J. Wang, J. Liu, M. Hu, J. Zeng, Y. Mu et al., A flexible, electrochromic, rechargeable Zn// PPy battery with a short circuit chromatic warning function. J. Mater. Chem. A 6, 11113–11118 (2018).

    [127] N. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganäs et al., Bioinspired redox-active catechol-bearing polymers as ultrarobust organic cathodes for lithium storage. Adv. Mater. 29, 1703373 (2017).

    [128] N. Patil, A. Mavrandonakis, C. Jérôme, C. Detrembleur, J. Palma et al., Polymers bearing catechol pendants as universal hosts for aqueous rechargeable H+, Li-ion, and post-Li-ion (mono-, di-, and trivalent) batteries. ACS Appl. Energy Mater. 2, 3035–3041 (2019).

    [129] W. Qiu, Lithium-ion rechargeable battery with petroleum coke anode and polyaniline cathode. Solid State Ion. 86–88, 903–906 (1996).

    [130] M.S. Rahmanifar, M.F. Mousavi, M. Shamsipur, H. Heli, A study on open circuit voltage reduction as a main drawback of Zn–polyaniline rechargeable batteries. Synth. Met. 155, 480–484 (2005).

    [131] A. Wu, E.C. Venancio, A.G. MacDiarmid, Polyaniline and polypyrrole oxygen reversible electrodes. Synth. Met. 157, 303–310 (2007).

    [132] B.N. Grgur, V. Ristić, M.M. Gvozdenović, M.D. Maksimović, B.Z. Jugović, Polyaniline as possible anode materials for the lead acid batteries. J. Power Sources 180, 635–640 (2008).

    [133] A. Mirmohseni, R. Solhjo, Preparation and characterization of aqueous polyaniline battery using a modified polyaniline electrode. Eur. Polym. J. 39, 219–223 (2003).

    [134] M. Adil, A. Sarkar, A. Roy, M.R. Panda, A. Nagendra et al., Practical aqueous calcium-ion battery full-cells for future stationary storage. ACS Appl. Mater. Interfaces 12, 11489–11503 (2020).

    [135] S.F. Kuchena, Y. Wang, Superior polyaniline cathode material with enhanced capacity for ammonium ion storage. ACS Appl. Energy Mater. 3, 11690–11698 (2020).

    [136] L. Liu, F. Tian, M. Zhou, H. Guo, X. Wang, Aqueous rechargeable lithium battery based on polyaniline and LiMn2O4 with good cycling performance. Electrochim. Acta 70, 360–364 (2012).

    [137] R. Han, Y. Pan, C. Yin, C. Du, Y. Xiang et al., Proton-self-doped PANI@CC as the cathode for high-performance aqueous zinc-ion battery. J. Colloid Interface Sci. 650, 322–329 (2023).

    [138] C. Yin, C. Pan, Y. Pan, J. Hu, G. Fang, Proton self-doped polyaniline with high electrochemical activity for aqueous zinc-ion batteries. Small Methods 7, e2300574 (2023).

    [139] N. Chikushi, H. Yamada, K. Oyaizu, H. Nishide, TEMPO-substituted polyacrylamide for an aqueous electrolyte-typed and organic-based rechargeable device. Sci. China Chem. 55, 822–829 (2012).

    [140] C. Zhang, W. Ma, C. Han, L.-W. Luo, A. Daniyar et al., Tailoring the linking patterns of polypyrene cathodes for high-performance aqueous Zn dual-ion batteries. Energy Environ. Sci. 14, 462–472 (2021).

    [141] H. Zhang, L. Zhong, J. Xie, F. Yang, X. Liu et al., A COF-like N-rich conjugated microporous polytriphenylamine cathode with pseudocapacitive anion storage behavior for high-energy aqueous zinc dual-ion batteries. Adv. Mater. 33, e2101857 (2021).

    [142] X. Wang, J. Tang, W. Tang, Manipulating polymer configuration to accelerate cation intercalation kinetics for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 32, 2200517 (2022).

    [143] M. Abdul Khayum, M. Ghosh, V. Vijayakumar, A. Halder, M. Nurhuda et al., Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem. Sci. 10, 8889–8894 (2019).

    [144] W. Wang, V.S. Kale, Z. Cao, S. Kandambeth, W. Zhang et al., Phenanthroline covalent organic framework electrodes for high-performance zinc-ion supercapattery. ACS Energy Lett. 5, 2256–2264 (2020).

    [145] H. Peng, S. Huang, V. Montes-García, D. Pakulski, H. Guo et al., Supramolecular engineering of cathode materials for aqueous zinc-ion energy storage devices: novel benzothiadiazole functionalized two-dimensional olefin-linked COFs. Angew. Chem. Int. Ed. 62, 2216136 (2023).

    [146] M. Yu, N. Chandrasekhar, R.K.M. Raghupathy, K.H. Ly, H. Zhang et al., A high-rate two-dimensional polyarylimide covalent organic framework anode for aqueous Zn-ion energy storage devices. J. Am. Chem. Soc. 142, 19570–19578 (2020).

    [147] W. Wang, V.S. Kale, Z. Cao, Y. Lei, S. Kandambeth et al., Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv. Mater. 33, 2103617 (2021).

    [148] Z. Sang, J. Liu, X. Zhang, L. Yin, F. Hou et al., One-dimensional π-d conjugated conductive metal-organic framework with dual redox-active sites for high-capacity and durable cathodes for aqueous zinc batteries. ACS Nano 17, 3077–3087 (2023).

    [149] F. Zhang, G. Wang, J. Wu, X. Chi, Y. Liu, An organic coordination manganese complex as cathode for high-voltage aqueous zinc-metal battery. Angew. Chem. Int. Ed. 62, 2309430 (2023).

    [150] Y. Wang, X. Wang, J. Tang, W. Tang, A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries. J. Mater. Chem. A 10, 13868–13875 (2022).

    [151] K.W. Nam, S.S. Park, R. dos Reis, V.P. Dravid, H. Kim et al., Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 10, 4948 (2019).

    Dujuan Li, Yuxuan Guo, Chenxing Zhang, Xianhe Chen, Weisheng Zhang, Shilin Mei, Chang-Jiang Yao. Unveiling Organic Electrode Materials in Aqueous Zinc-Ion Batteries: From Structural Design to Electrochemical Performance[J]. Nano-Micro Letters, 2024, 16(1): 194
    Download Citation