[1] N CANHA, C FREITAS M, M LMEIDA-SILVA. Air pollution at an urban traffic tunnel in Lisbon, Portugal: an INAA study. Applied Radiation and Isotopes, 69, 1586-1591(2011).
[2] L GUERRINI G. Photocatalytic performances in a city tunnel in Rome: NO
[3] A JACOBS P, R LOENDERS, O MONTICELLI. NO
[4] M LIU Z, I WOO S. Recent advances in catalytic DeNO. x science and technology. Catalysis Review, 48, 43-89(2006).
[5] H HAN X, U SCHNELL, L WEI X. Detailed modeling of hybrid reburn/SNCR processes for NO
[6] W BAE S, D KIM S, A ROH S. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process. Chemosphere, 65, 170-175(2006).
[7] H SOBUKAWA, N TAKAHASHI, K YAMAZAKI. The low-temperature performance of NO(
[8] J KLEIN, V TSCHAMBER, L WU D. Carbon-NSR catalyst interaction: impact on catalyst structure and NO
[9] F CHANG X, Y GUO, Z LU G. A high effective adsorbent of NO
[10] B CAI, C WEI J, P YU. Absorption of NO in aqueous NaClO2/ Na2CO3 solutions. Chemical Engineering Technology, 32, 114-119(2009).
[11] M HIRONAKA, S KISAMORI, I MOCHIDA. Oxidation of NO into NO2 over active-carbon fibers. Energy & Fuels, 8, 1341-1344(1994).
[12] Y LIU H, Y XU Y, K ZHANG Z. Adsorption-oxidation reaction mechanism of NO on Na-ZSM-5 molecular sieves with a high Si/Al ratio at ambient temperature. Chinese Journal of Catalysis, 31, 1233-1241(2010).
[13] F LI Y, Y LIU H, Y XU Y. Adsorption and catalysis on the surface of high silica ZSM-5 molecular sieve in NO oxidation at ambient temperature.. Journal of Chemical Engineering of Chinese Universities, 25, 615-621(2011).
[14] Y HUANG H, T YANG R. Removal of NO by reversible adsorption on Fe-Mn based transition metal oxides. Langmuir, 17, 4997-5003(2001).
[15] Y CHEN, M HUANG W, Z SHU. Room-temperature catalytic removal of low-concentration NO over mesoporous Fe-Mn binary oxide synthesized using a template-free approach. Applied Catalysis B: Environmental, 140, 42-50(2013).
[16] Y DU Y, L HUA Z, M HUANG W. Mesostructured amorphous manganese oxides: facile synthesis and highly durable elimination of low-concentration NO at room temperature in air. Chemical Communications, 51, 5887-5889(2015).
[17] J WANG, X ZHOU X, Z ZHU J. Nanoflower-like weak crystallization manganese oxide for efficient removal of low-concentration NO at room temperature. Journal of Materials Chemistry A, 3, 7631-7638(2015).
[18] Y DU Y, L HUA Z, M HUANG W. A facile ultrasonic process for the preparation of Co3O4 nanoflowers for room-temperature removal of low-concentration NO
[19] H CHEN C, H GENUINO, C NIAG E. Total oxidation of CO at ambient temperature using copper manganese oxide catalysts prepared by a redox method. Applied Catalysis B Environmental, 99, 103-110(2010).
[20] I HADYIIVANOV K. Identification of neutral and charged N
[21] U BENTRUP, A BRUCKNER, M RICHTER. NO