[1] Utela B, Storti D, Anderson R et al. A review of process development steps for new material systems in three dimensional printing(3DP)[J]. Journal of Manufacturing Processes, 10, 96-104(2008). http://www.sciencedirect.com/science/article/pii/S1526612509000206
[2] Mohamed O A, Masood S H, Bhowmik J L. Optimization of fused deposition modeling process parameters: a review of current research and future prospects[J]. Advances in Manufacturing, 3, 42-53(2015). http://www.cqvip.com/QK/85172A/20151/665213907.html
[3] Shao Z K, Jiang Y L. Key technologies of SLA 3D printing[J]. Mechanical & Electrical Engineering Magazine, 32, 180-184(2015).
[4] Zhou R Y, Shuai M B, Jiang C. Research progress in additive manufacturing technology of ceramic material[J]. Materials Review, 30, 67-72(2016).
[5] Yin H, Bai P K, Liu B et al. Present situation and development trend of selective laser melting technology for metal powder[J]. Hot Working Technology, 39, 140-144(2010).
[6] Wei Q S, Wang L, Zhang S[J]. et al. Study on the effects of powder properties on the performance of stainless steel parts produced by selective laser melting Electromachining & Mould, 2011, 52-56.
[7] Wang L, Wei Q S, He W T et al. Influence of powder characteristic and process parameters on SLM formability[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 40, 20-23(2012).
[8] Yap C Y, Chua C K, Dong Z L et al. Review of selective laser melting: Materials and applications[J]. Applied Physics Reviews, 2, 0411101(2015). http://www.tandfonline.com/servlet/linkout?suffix=CIT0018&dbid=16&doi=10.1080%2F14686996.2018.1455154&key=10.1063%2F1.4935926
[9] Calignano F. Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting[J]. Materials & Design, 64, 203-213(2014). http://www.sciencedirect.com/science/article/pii/S0261306914005755
[10] Kanagarajah P, Brenne F, Niendorf T. et al. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading[J]. Materials Science & Engineering A: Structural Materials Properties Microstructure & Processing, 588, 188-195(2013). http://www.sciencedirect.com/science/article/pii/S0921509313010010
[11] Yadroitsev I, Smurov I. Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape[J]. Physics Procedia, 5, 551-560(2010). http://www.sciencedirect.com/science/article/pii/S1875389210005092
[12] Hu Z H, Zhu H H, Zhang H et al. Experimental investigation on selective laser melting of 17-4PH stainless steel[J]. Optics & Laser Technology, 87, 17-25(2017). http://www.sciencedirect.com/science/article/pii/S0030399216302833
[13] Wei K W, Wang Z M, Zeng X Y. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components[J]. Materials Letters, 156, 187-190(2015). http://www.sciencedirect.com/science/article/pii/S0167577X1500796X
[14] Dai D H, Gu D D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J]. International Journal of Machine Tools and Manufacture, 88, 95-107(2015). http://www.sciencedirect.com/science/article/pii/S0890695514001424
[15] Gu D, Meiners W, Wissenbach K et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 57, 133-164(2012). http://www.tandfonline.com/doi/full/10.1179/1743280411Y.0000000014
[16] Dai D H, Gu D D. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments[J]. Materials & Design, 55, 482-491(2014). http://www.sciencedirect.com/science/article/pii/S0261306913009333
[17] Lavernia E J, Srivatsan T S. The rapid solidification processing of materials: science, principles, technology, advances, and applications[J]. Journal of Materials Science, 45, 287-325(2010). http://www.tandfonline.com/servlet/linkout?suffix=CIT0008&dbid=16&doi=10.1080%2F00084433.2017.1403106&key=10.1007%2Fs10853-009-3995-5
[18] Bartkowiak K, Ullrich S, Frick T et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physics Procedia, 12, 393-401(2011). http://www.sciencedirect.com/science/article/pii/S1875389211001295
[19] Martin J H, Yahata B D, Hundley J M et al. 3D printing of high-strength aluminium alloys[J]. Nature, 549, 365-369(2017). http://www.ncbi.nlm.nih.gov/pubmed/28933439
[20] Zhu H H, Liao H L. Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 55, 011402(2018).
[21] Aboulkhair N T, Tuck C, Ashcroft I et al. On the precipitation hardening of selective laser melted AlSi10Mg[J]. Metallurgical and Materials Transactions A, 46, 3337-3341(2015). http://link.springer.com/article/10.1007/s11661-015-2980-7
[22] Sing S L, Yeong W Y, Wiria F E. Selective laser melting of titanium alloy with 50wt% tantalum: Microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 660, 461-470(2016).
[23] Krakhmalev P, Yadroitsev I. Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti-SiC powder mixtures[J]. Intermetallics, 46, 147-155(2014). http://www.sciencedirect.com/science/article/pii/S0966979513003117
[24] Facchini L, Magalini E, Robotti P et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders[J]. Rapid Prototyping Journal, 16, 450-459(2010). http://www.emeraldinsight.com/doi/full/10.1108/13552541011083371
[25] Xiao Z N, Liu T T, Liao W H et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treament[J]. Chinese Journal of Lasers, 44, 0902001(2017).
[26] Pan A Q, Zhang H, Wang Z M. Molten pool microstructure of Ni-based single crystal superalloys fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 54, 071402(2017).
[27] Sufiiarov V S, Popovich A A, Borisov E V et al. Selective laser melting of heat-resistant Ni-based alloy[J]. Non-Ferrous Metals, 2015, 32-35(2015).
[28] Wang Y M, Voisin T. McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nature Materials, 17, 63-71(2017). http://europepmc.org/abstract/MED/29115290
[29] Demir A G, Previtali B. Multi-material selective laser melting of Fe/Al-12Si components[J]. Manufacturing Letters, 11, 8-11(2017). http://www.sciencedirect.com/science/article/pii/S2213846317300020
[30] Sun Z J, Tan X P, Tor S B et al. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting[J]. NPG Asia Materials, 10, 127-136(2018). http://www.nature.com/articles/s41427-018-0018-5
[31] Sansoni G, Docchio F. Three-dimensional optical measurements and reverse engineering for automotive applications[J]. Robotics and Computer-Integrated Manufacturing, 20, 359-367(2004). http://www.sciencedirect.com/science/article/pii/S0736584504000183
[32] Ghany K A, Moustafa S F. Comparison between the products of four RPM systems for metals[J]. Rapid Prototyping Journal, 12, 86-94(2006). http://www.emeraldinsight.com/doi/full/10.1108/13552540610652429
[33] Raja V, Zhang S J, Garside J et al. Rapid and cost-effective manufacturing of high-integrity aerospace components[J]. The International Journal of Advanced Manufacturing Technology, 27, 759-773(2006). http://link.springer.com/article/10.1007/s00170-004-2251-z
[34] Prashanth K G, Scudino S, Klauss H J et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment[J]. Materials Science and Engineering: A, 590, 153-160(2014). http://www.sciencedirect.com/science/article/pii/S0921509313011180
[35] Zou Y T, Wei Z Y, Du J et al. Effect and optimization of processing parameters on relative density of AlSi10Mg alloy parts by selective laser melting[J]. Applied Laser, 36, 656-662(2016).
[36] Brandl E, Heckenberger U, Holzinger V. et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 34, 159-169(2012). http://www.sciencedirect.com/science/article/pii/S0261306911005590
[37] Zhang W Q, Zhu H H, Hu Z H et al. Study on the selective laser melting of AlSi10Mg[J]. Acta Metallurgica Sinica, 53, 918-926(2017).
[38] Deng X H, Yang Z J. Current situation and prospect of titanium alloy additive manufacturing technology[J]. Development and Application of Materials, 29, 113-120(2014).
[39] Gu D D, Hagedorn Y C, Meiners W et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 60, 3849-3860(2012). http://www.sciencedirect.com/science/article/pii/S1359645412002522
[40] Xu W, Lui E W, Pateras A et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance[J]. Acta Materialia, 125, 390-400(2017). http://www.sciencedirect.com/science/article/pii/S1359645416309636
[41] Vilaro T, Colin C, Bartout J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions A, 42, 3190-3199(2011). http://link.springer.com/article/10.1007/s11661-011-0731-y
[42] Ali H, Ma L, Ghadbeigi H et al. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V[J]. Materials Science and Engineering: A, 695, 211-220(2017).
[43] Zuo W, Zhang Q M, Lei Y et al. Mechanical properties of selective laser melted and shaped K4202 nickel-based superalloy at room temperature[J]. Journal of Rocket Propulsion, 43, 53-58(2017).
[44] Vilaro T, Colin C, Bartout J D et al. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy[J]. Materials Science and Engineering: A, 534, 446-451(2012). http://www.sciencedirect.com/science/article/pii/S0921509311013311
[45] Choi J P, Shin G H, Yang S S et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting[J]. Powder Technology, 310, 60-66(2017). http://www.sciencedirect.com/science/article/pii/S0032591017300402
[46] Zhang Y, Gu D D, Shen L D et al[J]. Study on selective laser melting additive manufacturing process of INCONEL Ni-based superalloy Electromachining & Mould, 2014, 38-43.
[47] Li Y, Chen C J, Wang X N et al. Study on the process and properties of biomedical 316L porous stainless steel prepared by selective laser melting technique[J]. Applied Laser, 35, 319-323(2015).
[48] Sun T T, Yang Y Q, Su X B et al. Research of densification of 316L stainless steel powder in selective laser melting process[J]. Laser Technology, 34, 443-446(2010).
[49] Yin Y, Liu P Y, Lu C et al. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. Electric Welding Machine, 47, 69-74(2017).
[50] Chen S, Tao F H, Jia C Z et al. Research on selective laser melting forming process and property of H13 die steel[J]. Hot Working Technology, 46, 162-165(2017).