• Infrared and Laser Engineering
  • Vol. 47, Issue 8, 803004 (2018)
Jia Zhixu*, Yao Chuanfei, Li Zhenrui, Jia Shijie..., Zhao Zhipeng, Qin Weiping and Qin Guanshi|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201847.0803004 Cite this Article
    Jia Zhixu, Yao Chuanfei, Li Zhenrui, Jia Shijie, Zhao Zhipeng, Qin Weiping, Qin Guanshi. High power mid-infrared supercontiuum light sources based on fluorotellurite glass fibers (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803004 Copy Citation Text show less
    References

    [1] Alfano R. The Supercontinuum Laser Source [M]. New York: Springer, 2006.

    [2] Dudley J, Taylor R. Supercontinuum Generation in Optical Fibers [M]. New York: Cambridge University Press, 2010.

    [3] Wei Zhiyi. The 2005 Nobel prize in physics and optical frequency comb techniques [J]. Physics, 2006, 35(3): 213-217. (in Chinese)

    [4] Hartl I, Li X D, Chudoba C, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J]. Optics Letters, 2001, 26(9): 608-610.

    [5] Wildanger D, Rittweger E, Kastrup L, et al. STED microscopy with a supercontinuum laser source[J]. Optics Express, 2008, 16(13): 9614-9621.

    [6] Brown D M, Shi K, Liu Z, et al. Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents [J]. Optics Express, 2008, 16(12): 8457-8471.

    [7] Wallace J. IR supercontinuum laser helps defend helicopters [N]. Laser Focus World, 2010, Sept 3.

    [8] Qian Liejia. Development and integration of wide tunable mid infrared femtosecond and narrow band long pulse laser devices [J]. Infrared and Laser Engineering, 2006, 35(z3): 43. (in Chinese)

    [9] Deng Ying, Zhu Qihua, Zeng Xiaoming, et al. The generation and recent progress of ultrashort mid-infrared pulse[J]. Laser & Optoelectronics Progress, 2006, 43(8): 21-26. (in Chinese)

    [10] Chen K, Alam S U, Price J H V, et al. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power [J]. Optics Express, 2010, 18(6): 5426-5432.

    [11] Sanghera J S, Aggarwal I D, Busse L E, et al. Chalcogenide optical fibers target mid-IR applications [J]. Laser Focus World, 2005, 41(4): 83-87.

    [12] Harbold J M, Ilday F O, Wise F W, et al. Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching[J]. IEEE Photonics Technology Letters, 2002, 14(6): 822-824.

    [13] Slusher R E, Lenz G, Hodelin J, et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers [J]. Journal of the Optical Society of America B-Optical Physics, 2004, 21(6): 1146-1155.

    [14] Feng X, Mairaj A K, Hewak D W, et al. Nonsilica glasses for holey fibers[J]. Journal of Lightwave Technology, 2005, 23(6): 2046-2054.

    [16] Cheng T L, Nagasaka K, Tuan T H, et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(9): 2117-2120.

    [17] Zhao Z M, Wang X S, Dai S X, et al. 1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber [J]. Optics Letters, 2016, 41(22): 5222-5225.

    [18] Zhao Z M, Wu B, Wang X S, et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber [J]. Laser & Photonics Reviews, 2017, 11(2): 1700005.

    [22] Liu K, Liu J, Shi H X, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power [J]. Optics Express, 2014, 22(20): 24384-24391.

    [23] Liu K, Liu J, Shi H X, et al. 24.3 W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier [C]//Advanced Solid State Lasers, 2014, AM3A.6.

    [24] Zheng Z J, Ouyang D Q, Zhao J Q, et al. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber [J]. Photonics Research, 2016, 4(4): 135-139.

    [26] Poulain M, Poulain M, Lucas J. Verres fluores au tetrafluorure de zirconium proprietes optiques d'un verre dope au Nd3+ [J]. Materials Research Bulletin, 1975, 10(4): 243-246.

    [27] Zhu X, Peyghambarian N. High-power ZBLAN glass fiber lasers: review and prospect[J]. Advances in OptoElectronics, 2010(1687-563X): 149-154.

    [28] Wang J S, Vogel E M, Snitzer E. Tellurite glass: a new candidate for fiber devices[J]. Optical Materials, 1994, 3(3): 187-203.

    [29] Ghosh G. Sellmeier coefficients and chromatic dispersions for some tellurite glasses [J]. Journal of the American Ceramic Society, 1995, 78(10): 2828-2830.

    [30] Domachuk P, Wolchover N A, Cronin-Golomb M, et al. Over 4 000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs [J]. Optics Express, 2008, 16(10): 7161-7168.

    [31] Thapa R, Rhonehouse D, Nguyen D, et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm [C]//SPIE 2013, 8898: 889808.

    [32] Shi H X, Feng X, Tan F Z, et al. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber[J]. Optical Materials Express, 2016, 6(12): 3967-3976.

    [33] Yang L, Zhang B, Yin K, et al. 0.6-3.2 μm supercontinuum generation in a stepindex germania-core fiber using a 4.4 kW peak power pump laser [J]. Optics Express, 2016, 13(24): 12600-12606.

    [34] Yin K, Zhang B, Yao J, et al. 1.9-3.6 μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio[J]. Optics Letters, 2016, 41(21): 5067-5070.

    [35] Yin K, Zhang B, Yang L, et al. 30 W monolithic 2-3 μm supercontinuum laser[J]. Photonics Research, 2018, 6(2): 123-126.

    [36] O′donnell M D, Miller C A, Furniss D, et al. Fluorotellurite glasses with improved mid-infrared transmission [J]. Journal of Non-Crystalline Solids, 2003, 331(1-3): 48-57.

    [37] Liao G H, Chen Q P, Xing J J, et al. Preparation and characterization of new fluorotellurite glasses for photonics application [J]. Journal of Non-Crystalline Solids, 2009, 355(7): 447-452.

    [38] O′donnell M D, Richardson K, Stolen R, et al. Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization[J]. Journal of the American Ceramic Society, 2007, 90(5): 1448-1457.

    [39] Wang R, Meng X, Yin F, et al. Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications [J]. Optical Material Express, 2013, 3(8): 1127-1136.

    [40] de Sousa D F, Zonetti L F C, Bell M J V, et al. On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses[J]. Applied Physics Letters, 1999, 74(7): 908-910.

    [41] Yao C, He C, Jia Z, et al. Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing[J]. Optics Letters, 2015, 40(20): 4695-4698.

    [42] Wang F, Wang K, Yao C, et al. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation[J]. Optics Letters, 2016, 41(3): 634-637.

    [43] Bei J F, Foo H T C, Qian G J, et al. Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water[J]. Optical Materials Express, 2014, 4(6): 1213-1226.

    [44] Dudley J M, Coen S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers[J]. Optics Letters, 2002, 27(13): 1180-1182.

    [45] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber [J]. Reviews of Modern Physics, 2006, 78(4): 1135-1184.

    [46] Savelii I, Desevedavy F, Jules J C, et al. Management of OH absorption in tellurite optical fibers and related supercontinuum generation[J]. Optical Materials, 2013, 35(8): 1595-1599.

    [47] Jia Z, Yao C, Jia S, et al. Supercontinuum generation covering the entire transmission window of 0.4-5 μm in a tapered ultra-high NA all-solid fluorotellurite fiber [J]. Laser Physics Letters, 2018, 15: 025102.

    [48] Jia Z, Yao C, Jia S, et al. 4.5 W supercontinuum generation from 1 017 to 3 438 nm in an all-solid fluorotellurite fiber [J]. Applied Physics Letters, 2017, 110: 261106.

    [49] Corwin K L, Newbury N R, Dudley J M, et al. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber [J]. Applied Physics B-Lasers and Optics, 2003, 77(2-3): 269-277.

    [50] Corwin K L, Newbury N R, Dudley J M, et al. Fundamental noise limitations to supercontinuum generation in microstructure fiber [J]. Physical Review Letters, 2003, 90(11): 113904.

    [53] Zhan H, Shi T F, Zhang A D, et al. Nonlinear characterization on mid-infrared fluorotellurite glass fiber[J]. Materials Letters, 2014, 120: 174-176.

    [54] Chen Z, Taylor A J, Efimov A. Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper [J]. Optics Express, 2009, 17(7): 5852-5860.

    [55] Yao C, Jia Z, Li Z, et al. 10-W-level mid-infrared supercontinuum laser source using fluorotellurite fiber [J]. (Submitted).

    CLP Journals

    [1] ZHAO Ming, WANG Tianshu. Generation of high-energy pulses in dispersion-managed Tm-doped fiber laser[J]. Journal of Applied Optics, 2019, 40(4): 551

    Jia Zhixu, Yao Chuanfei, Li Zhenrui, Jia Shijie, Zhao Zhipeng, Qin Weiping, Qin Guanshi. High power mid-infrared supercontiuum light sources based on fluorotellurite glass fibers (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803004
    Download Citation