[1] M. Jia, H. Dechiruji, J. Selberg, P. Pansodtee, J. Mathews et al., Bioelectronic control of chloride ions and concentration with Ag/AgCl contacts. APL Mater. 8, 091106 (2020).
[2] P.R.F. Rocha, P. Schlett, U. Kintzel, V. Mailänder, L.K.J. Vandamme et al., Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations. Sci. Rep. 6, 34843 (2016).
[3] J. Dunlop, M. Bowlby, R. Peri, D. Vasilyev, R. Arias, High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 7, 358–368 (2008).
[4] R. Liu, R. Chen, A.T. Elthakeb, S.H. Lee, S. Hinckley et al., High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17, 2757–2764 (2017).
[5] S. Sundelacruz, M. Levin, D.L. Kaplan, Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. Rep. 5, 231–246 (2009).
[6] D.J. Blackiston, K.A. McLaughlin, M. Levin, Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8, 3527–3536 (2009).
[7] A. Timmis, N. Townsend, C. Gale, R. Grobbee, N. Maniadakis et al., European society of cardiology: Cardiovascular disease statistics 2017. Oxford University Press, Oxford. (2018)
[8] Correction to: heart disease and stroke statistics-2023 update: a report from the American heart association. Circulation 148, e4 (2023).
[9] G. Vorobiof, C. Silverstein, Non-invasive cardiac imaging for evaluation of cardiotoxicity in cancer patients-early detection and follow-up. SA Heart (2017).
[10] Y. Yang, A. Liu, C.-T. Tsai, C. Liu, J.C. Wu et al., Cardiotoxicity drug screening based on whole-panel intracellular recording. Biosens. Bioelectron. 216, 114617 (2022).
[11] L. Xiao, Z. Hu, W. Zhang, C. Wu, H. Yu et al., Evaluation of doxorubicin toxicity on cardiomyocytes using a dual functional extracellular biochip. Biosens. Bioelectron. 26, 1493–1499 (2010).
[12] A.L. Hodgkin, A.F. Huxley, Action potentials recorded from inside a nerve fibre. Nature 144, 710–711 (1939).
[13] L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom et al., Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9, 2644–2651 (2009).
[14] C.-X. Lin, J.-L. Gu, J.-M. Cao, The acute toxic effects of platinum nanoparticles on ion channels, transmembrane potentials of cardiomyocytes in vitro and heart rhythm in vivo in mice. Int. J. Nanomedicine 14, 5595–5609 (2019).
[15] T. Meyer, K.-H. Boven, E. Günther, M. Fejtl, Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Drug Saf. 27, 763–772 (2004).
[16] D. Xu, J. Mo, X. Xie, N. Hu, In-cell nanoelectronics: opening the door to intracellular electrophysiology. Nano-Micro Lett. 13, 127 (2021).
[17] J. Fang, S. Huang, F. Liu, G. He, X. Li et al., Semi-implantable bioelectronics. Nano-Micro Lett. 14, 125 (2022).
[18] D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel et al., Force-controlled patch clamp of beating cardiac cells. Nano Lett. 15, 1743–1750 (2015).
[19] B. Hille, Ion channels of excitable membranes sunderland. Sinauer Associates Inc. (2001)
[20] A. Molleman, Patch clamping: an introductory guide to patch clamp electrophysiology (Patch Clamping: An Introductory Guide To Patch Clamp Electrophysiology; 2003)
[21] D. C. Sigg, P. A. Iaizzo, Y. F. Xiao, B. He. Electrophysiology of single cardiomyocytes: Patch clamp and other recording methods. (Chapter 16), 329–348 (2010).
[22] R.L. Schrøder, M. Christensen, B. Anson, M. Sunesen, Exploring stem cell-derived cardiomyocytes with automated patch clamp techniques. Biophys. J. 102, 544a (2012).
[23] B. Amuzescu, S. Frech, K. Lin, J. Eisfeld, J. Kudolo et al., Electrophysiology Characterization of Human Induced Pluripotent Stem Cell-derived Cardiomyocytes Using Automated Patch-clamp. (2015)
[24] A. Marques-Smith, J.P. Neto, G. Lopes, J. Nogueira, L. Calcaterra et al., Recording from the same neuron with high-density CMOS probes and patch-clamp: a ground-truth dataset and an experiment in collaboration. bioRxiv (2018).
[25] V. Grenier, K.N. Martinez, B.R. Benlian, D.M. García-Almedina, B.K. Raliski et al., Molecular prosthetics for long-term functional imaging with fluorescent reporters. ACS Cent. Sci. 8, 118–121 (2022).
[26] A. Grinvald, R. Hildesheim, VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874–885 (2004).
[27] L.N. Kahyaoglu, R. Madangopal, M. Stensberg, Rickus J.L, Light-directed functionalization methods for high-resolution optical fiber based biosensors. SPIE Sensing Technology + Applications. Proc SPIE 9486, Advanced Environmental, Chemical, and Biological Sensing Technologies XII Baltimore, MD, USA 9486, 9–18 (2015).
[28] A. Matiukas, B.G. Mitrea, M. Qin, A.M. Pertsov, A.G. Shvedko et al., Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm 4, 1441–1451 (2007).
[29] M. Warren, K.W. Spitzer, B.W. Steadman, T.D. Rees, P. Venable et al., High-precision recording of the action potential in isolated cardiomyocytes using the near-infrared fluorescent dye di-4-ANBDQBS. Am. J. Physiol. Heart Circ. Physiol. 299, H1271–H1281 (2010).
[30] M. Warren, K.W. Spitzer, B.W. Steadman, P. Venable, T. Taylor et al., Near infrared emitting dye di-4-ANBDQBS for recording action potentials in isolated cardiomyocytes. Biophys. J. 96, 293a (2009).
[31] J. Abbott, T. Ye, K. Krenek, R.S. Gertner, S. Ban et al., A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232–241 (2020).
[32] T. Banno, S. Tsuruhara, Y. Seikoba, R. Tonai, K. Yamashita et al., Nanoneedle-electrode devices for in vivo recording of extracellular action potentials. ACS Nano 16, 10692–10700 (2022).
[33] A. Barbaglia, M. Dipalo, G. Melle, G. Iachetta, L. Deleye et al., Mirroring action potentials: label-free, accurate, and noninvasive electrophysiological recordings of human-derived cardiomyocytes. Adv. Mater. 33, e2004234 (2021).
[34] B.X.E. Desbiolles, E. de Coulon, A. Bertsch, S. Rohr, P. Renaud, Intracellular recording of cardiomyocyte action potentials with nanopatterned volcano-shaped microelectrode arrays. Nano Lett. 19, 6173–6181 (2019).
[35] J. Fang, D. Xu, H. Wang, J. Wu, Y. Li et al., Scalable and robust hollow nanopillar electrode for enhanced intracellular action potential recording. Nano Lett. 23, 243–251 (2023).
[36] Z. Jahed, Y. Yang, C.-T. Tsai, E.P. Foster, A.F. McGuire et al., Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nat. Commun. 13, 2253 (2022).
[37] J.T. Robinson, M. Jorgolli, A.K. Shalek, M.-H. Yoon, R.S. Gertner et al., Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012).
[38] M. Abarkan, A. Pirog, D. Mafilaza, G. Pathak, G. N’Kaoua et al., Vertical organic electrochemical transistors and electronics for low amplitude micro-organ signals. Adv. Sci. 9, e2105211 (2022).
[39] B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie et al., Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).
[40] T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang, C.M. Lieber, Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10, 1098–1102 (2010).
[41] X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing et al., Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2011).
[42] Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai et al., Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9, 142–147 (2014).
[43] S. Asgarifar, H. Gomes, A. Mestre, P.M. C. Inácio, J. Bragança et al., in Electrochemically Gated Graphene Field-effect Transistor for Extracellular Cell Signal Recording. ed. by (2016), pp. 558–564.
[44] Y. Gu, C. Wang, N. Kim, J. Zhang, T.M. Wang et al., Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat. Nanotechnol. 17, 292–300 (2022).
[45] A. Kyndiah, F. Leonardi, C. Tarantino, T. Cramer, R. Millan-Solsona et al., Bioelectronic recordings of cardiomyocytes with accumulation mode electrolyte gated organic field effect transistors. Biosens. Bioelectron. 150, 111844 (2020).
[46] H. Gao, F. Yang, K. Sattari, X. Du, T. Fu et al., Bioinspired two-in-one nanotransistor sensor for the simultaneous measurements of electrical and mechanical cellular responses. Sci. Adv. 8, eabn2485 (2022).
[47] P. Connolly, P. Clark, A.S.G. Curtis, J.A.T. Dow, C.D.W. Wilkinson, An Extracellular microelectrode Array for monitoring electrogenic cells in culture. Biosens. Bioelectron. 5, 223–234 (1990).
[48] T.J. Blanche, M.A. Spacek, J.F. Hetke, N.V. Swindale, Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. J. Neurophysiol. 93, 2987–3000 (2005).
[49] P.J. Koester, C. Tautorat, H. Beikirch, J. Gimsa, W. Baumann, Recording electric potentials from single adherent cells with 3D microelectrode arrays after local electroporation. Biosens. Bioelectron. 26, 1731–1735 (2010).
[50] M.E. Spira, A. Hai, Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013).
[51] V. Zlochiver, S.L. Kroboth, C.R. Beal, J.A. Cook, R. Joshi-Mukherjee, Human iPSC-derived cardiomyocyte networks on multiwell micro-electrode arrays for recurrent action potential recordings. J. Vis. Exp. 149, e59906 (2019).
[52] X. Wei, C. Qin, C. Gu, C. He, Q. Yuan et al., A novel bionic in vitro bioelectronic tongue based on cardiomyocytes and microelectrode array for bitter and umami detection. Biosens. Bioelectron. 145, 111673 (2019).
[53] A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016).
[54] I. Zadorozhnyi, H. Hlukhova, Y. Kutovyi, V. Handziuk, N. Naumova et al., Towards pharmacological treatment screening of cardiomyocyte cells using Si nanowire FETs. Biosens. Bioelectron. 137, 229–235 (2019).
[55] G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, A. Trifonov et al., Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens. Bioelectron. 88, 283–289 (2017).
[56] J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner et al., CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017).
[57] J.S. Park, S.I. Grijalva, D. Jung, S. Li, G.V. Junek et al., Intracellular cardiomyocytes potential recording by planar electrode array and fibroblasts co-culturing on multi-modal CMOS chip. Biosens. Bioelectron. 144, 111626 (2019).
[58] J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic et al., High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15, 2767–2780 (2015).
[59] C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36, 1052–1063 (2011).
[60] B.P. Timko, T. Cohen-Karni, Q. Qing, B. Tian, C.M. Lieber, Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 9, 269–280 (2010).
[61] P.B. Kruskal, Z. Jiang, T. Gao, C.M. Lieber, Beyond the patch clamp: nanotechnologies for intracellular recording. Neuron 86, 21–24 (2015).
[62] Y. Zhang, L.F. Duan, Y. Zhang, J. Wang, H. Geng et al., Advances in conceptual electronic nanodevices based on 0D and 1D nanomaterials. Nano-Micro Lett. 6, 1–19 (2014).
[63] M. Liu, Z. Wu, W.M. Lau, J. Yang, Recent advances in directed assembly of nanowires or nanotubes. Nano-Micro Lett. 4, 142–153 (2012).
[64] Y. Fang, Y. Jiang, H. Acaron Ledesma, J. Yi, X. Gao et al., Texturing silicon nanowires for highly localized optical modulation of cellular dynamics. Nano Lett. 18, 4487–4492 (2018).
[65] P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan et al., Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8, 193–203 (2016).
[66] J. Li, Y. Ma, D. Huang, Z. Wang, Z. Zhang et al., High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography. Nano-Micro Lett. 14, 132 (2022).
[67] Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15, 66 (2023).
[68] D. Jäckel, D.J. Bakkum, T.L. Russell, J. Müller, M. Radivojevic et al., Combination of high-density microelectrode array and patch clamp recordings to enable studies of multisynaptic integration. Sci. Rep. 7, 978 (2017).
[69] Y. Zhang, Y. Tang, Y. Wang, L. Zhang, Nanomaterials for cardiac tissue engineering application. Nano-Micro Lett. 3, 270–277 (2011).
[70] J. Lou-Franco, B. Das, C. Elliott, C. Cao, Gold nanozymes: from concept to biomedical applications. Nano-Micro Lett. 13, 10 (2020).
[71] Y. Jin, H. Wang, K. Yi, S. Lv, H. Hu et al., Applications of nanobiomaterials in the therapy and imaging of acute liver failure. Nano-Micro Lett. 13, 25 (2020).
[72] S. Kim, J. Seo, J. Choi, H. Yoo, Vertically integrated electronics: new opportunities from emerging materials and devices. Nano-Micro Lett. 14, 201 (2022).
[73] X. Dai, W. Zhou, T. Gao, J. Liu, C.M. Lieber, Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 11, 776–782 (2016).
[74] C. Xie, J. Liu, T.-M. Fu, X. Dai, W. Zhou et al., Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286–1292 (2015).
[75] S.K. Krishnan, N. Nataraj, M. Meyyappan, U. Pal, Graphene-based field-effect transistors in biosensing and neural interfacing applications: recent advances and prospects. Anal. Chem. 95, 2590–2622 (2023).
[76] S. Wang, M.Z. Hossain, K. Shinozuka, N. Shimizu, S. Kitada et al., Graphene field-effect transistor biosensor for detection of biotin with ultrahigh sensitivity and specificity. Biosens. Bioelectron. 165, 112363 (2020).
[77] L. Xu, Z. Jiang, L. Mai, Q. Qing, Multiplexed free-standing nanowire transistor bioprobe for intracellular recording: a general fabrication strategy. Nano Lett. 14, 3602–3607 (2014).
[78] C. Yao, Q. Li, J. Guo, F. Yan, I.-M. Hsing, Rigid and flexible organic electrochemical transistor arrays for monitoring action potentials from electrogenic cells. Adv. Healthc. Mater. 4, 528–533 (2015).
[79] S.J. Luck, An introduction to the event-related potential technique. Sveučilište u Rijeci. (2005)
[80] S. Cabrini, Sub-10-nm three-dimensional plasmonic probes and sensors. 2016 Progress in Electromagnetic Research Symposium (PIERS). Shanghai, China. IEEE, (2016). p 836
[81] R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie et al., Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12, 3329–3333 (2012).
[82] T.P. Dasari Shareena, D. McShan, A.K. Dasmahapatra, P.B. Tchounwou, A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 10, 53 (2018).
[83] S. Luo, L. Peng, Y. Xie, X. Cao, X. Wang et al., Flexible large-area graphene films of 50–600nm thickness with high carrier mobility. Nano-Micro Lett. 15, 61 (2023).
[84] L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu et al., Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19, 2782–2789 (2009).
[85] W.C. Lee, C.H. Lim, H. Shi, L.A. Tang, Y. Wang et al., Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5, 7334–7341 (2011).
[86] M. Kaisti, Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 98, 437–448 (2017).
[87] W. Fu, L. Jiang, E.P. van Geest, L.M. Lima, G.F. Schneider, Sensing at the surface of graphene field-effect transistors. Adv. Mater. 29, 1603610 (2017).
[88] R. Stine, S.P. Mulvaney, J.T. Robinson, C.R. Tamanaha, P.E. Sheehan, Fabrication, optimization, and use of graphene field effect sensors. Anal. Chem. 85, 509–521 (2013).
[89] T. Feuk, On the transparency of the stroma in the mammalian Cornea. IEEE Trans. Biomed. Eng. BME-17, 186–190 (1970).
[90] S.-A. Peng, Z. Jin, P. Ma, D.-Y. Zhang, J.-Y. Shi et al., The sheet resistance of graphene under contact and its effect on the derived specific contact resistivity. Carbon 82, 500–505 (2015).
[91] W. Fu, C. Nef, A. Tarasov, M. Wipf, R. Stoop et al., High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale 5, 12104–12110 (2013).
[92] L.H. Hess, M. Seifert, J.A. Garrido, Graphene transistors for bioelectronics. Proc. IEEE 101, 1780–1792 (2013).
[93] F. Veliev, Z. Han, D. Kalita, A. Briançon-Marjollet, V. Bouchiat et al., Recording spikes activity in cultured hippocampal neurons using flexible or transparent graphene transistors. Front. Neurosci. 11, 466 (2017).
[94] L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang et al., Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13, 746–751 (2013).
[95] Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12, 1711–1716 (2012).
[96] T.-M. Fu, X. Duan, Z. Jiang, X. Dai, P. Xie et al., Sub-10-nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. Proc. Natl. Acad. Sci. U.S.A. 111, 1259–1264 (2014).
[97] T. Cohen-Karni, D. Casanova, J.F. Cahoon, Q. Qing, D.C. Bell et al., Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 12, 2639–2644 (2012).
[98] R. Elnathan, M. Kwiat, F. Patolsky, N.H. Voelcker, Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 9, 172–196 (2014).
[99] J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, H. Ruda, Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 554–557 (1997).
[100] Q. Gao, V.G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li et al., Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays. Nano Lett. 16, 4361–4367 (2016).
[101] S. Barth, F. Hernandez-Ramirez, J.D. Holmes, A. Romano-Rodriguez, Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci. 55, 563–627 (2010).
[102] J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999).
[103] A.K. Shalek, J.T. Robinson, E.S. Karp, J.S. Lee, D.-R. Ahn et al., Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl. Acad. Sci. U.S.A. 107, 1870–1875 (2010).
[104] Y.J. Hwang, C. Hahn, B. Liu, P. Yang, Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano 6, 5060–5069 (2012).
[105] Y. Zhao, S.S. You, A. Zhang, J.H. Lee, J. Huang et al., Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14, 783–790 (2019).
[106] Z. Huang, H. Fang, J. Zhu, Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 19, 744–748 (2007).
[107] Y.Q. Fu, A. Colli, A. Fasoli, J.K. Luo, A.J. Flewitt et al., Deep reactive ion etching as a tool for nanostructure fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 27, 1520–1526 (2009).
[108] R. Juhasz, N. Elfström, J. Linnros, Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. Nano Lett. 5, 275–280 (2005).
[109] Y. Zhang, J. Clausmeyer, B. Babakinejad, A.L. Córdoba, T. Ali et al., Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano 10, 3214–3221 (2016).
[110] F. Torricelli, D.Z. Adrahtas, Z. Bao, M. Berggren, F. Biscarini et al., Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Meth. Primers 1, 66 (2021).
[111] D. Kireev, M. Brambach, S. Seyock, V. Maybeck, W. Fu et al., Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity. Sci. Rep. 7, 6658 (2017).
[112] L. Capua, S. Sheibani, S. Kamaei, J. Zhang, A.M. Ionescu, Extended-Gate FET cortisol sensor for stress disorders based on aptamers-decorated graphene electrode: fabrication, Experiments and Unified Analog Predictive Modeling. 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, (2020), 35.2.1–35.2.4.
[113] S.J. Park, S.E. Seo, K.H. Kim, S.H. Lee, J. Kim et al., Real-time monitoring of geosmin based on an aptamer-conjugated graphene field-effect transistor. Biosens. Bioelectron. 174, 112804 (2021).
[114] A.K. Geim, D. Jiang, E.H. Hill, F. Schedin, K.S. Novoselov et al., Detection of individual gas molecules absorbed on graphene. arXiv e-prints. (2006)
[115] J. Ristein, W. Zhang, F. Speck, M. Ostler, L. Ley et al., Characteristics of solution gated field effect transistors on the basis of epitaxial graphene on silicon carbide. J. Phys. D Appl. Phys. 43, 345303 (2010).
[116] Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9, 3318–3322 (2009).
[117] C. Homma, M. Tsukiiwa, H. Noguchi, M. Tanaka, M. Okochi et al., Designable peptides on graphene field-effect transistors for selective detection of odor molecules. Biosens. Bioelectron. 224, 115047 (2023).
[118] R. Negishi, H. Hirano, Y. Ohno, K. Maehashi, K. Matsumoto et al., Layer-by-layer growth of graphene layers on graphene substrates by chemical vapor deposition. Thin Solid Films 519, 6447–6452 (2011).
[119] B.M. Blaschke, M. Lottner, S. Drieschner, A.B. Calia, K. Stoiber et al., Flexible graphene transistors for recording cell action potentials. 2D Mater. 3, 025007 (2016).
[120] L.H. Hess, M. Jansen, V. Maybeck, M.V. Hauf, M. Seifert et al., Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23, 5045–5049, 4968 (2011).
[121] C. Xie, Z. Lin, L. Hanson, Y. Cui, B. Cui, Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012).
[122] J. Abbott, T. Ye, D. Ham, H. Park, Optimizing nanoelectrode arrays for scalable intracellular electrophysiology. Acc. Chem. Res. 51, 600–608 (2018).
[123] M. Dipalo, G. Melle, L. Lovato, A. Jacassi, F. Santoro et al., Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Nat. Nanotechnol. 13, 965–971 (2018).
[124] M. Dipalo, H. Amin, L. Lovato, F. Moia, V. Caprettini et al., Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett. 17, 3932–3939 (2017).
[125] M. Dipalo, G.C. Messina, H. Amin, R. La Rocca, V. Shalabaeva et al., 3D plasmonic nanoantennas integrated with MEA biosensors. Nanoscale 7, 3703–3711 (2015).
[126] E.A. Woodcock, S.J. Matkovich, Cardiomyocytes structure, function and associated pathologies. Int. J. Biochem. Cell Biol. 37, 1746–1751 (2005).
[127] D.M. Bers, S. Despa, Cardiac excitation–contraction coupling. Encyclopedia of Biological Chemistry. Amsterdam: Elsevier, (2013), 379–383.
[128] T. Kuo, Peter, Cardiac electrophysiology: From cell to bedside. JAMA 274(6), 507 (1991).
[129] D. Später, E.M. Hansson, L. Zangi, K.R. Chien, How to make a cardiomyocyte. Development 141, 4418–4431 (2014).
[130] A. Leri, M. Rota, F.S. Pasqualini, P. Goichberg, P. Anversa, Origin of cardiomyocytes in the adult heart. Circ. Res. 116, 150–166 (2015).
[131] L.F. Santana, E.P. Cheng, W.J. Lederer, How does the shape of the cardiac action potential control calcium signaling and contraction in the heart? J. Mol. Cell. Cardiol. 49, 901–903 (2010).
[132] E. Carmeliet, J. Vereecke, Adrenaline and the plateau phase of the cardiac action potential. Importance of Ca++, Na+ and K+ conductance. Pflugers Arch. 313, 300–315 (1969).
[133] C.H. Luo, Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68, 1501–1526 (1991).
[134] Z.C. Lin, A.F. McGuire, P.W. Burridge, E. Matsa, H.Y. Lou et al., Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. Microsyst. Nanoeng. 3, 16080 (2017).
[135] Y. Liang, M. Ernst, F. Brings, D. Kireev, V. Maybeck et al., High performance flexible organic electrochemical transistors for monitoring cardiac action potential. Adv. Healthc. Mater. 7, e1800304 (2018).
[136] S. Syama, P.V. Mohanan, Comprehensive application of graphene: emphasis on biomedical concerns. Nano-Micro Lett. 11, 6 (2019).
[137] L. Zhou, K. Wang, H. Sun, S. Zhao, X. Chen et al., Novel graphene biosensor based on the functionalization of multifunctional nano-bovine serum albumin for the highly sensitive detection of cancer biomarkers. Nano-Micro Lett. 11, 20 (2019).
[138] Z. Zhu, An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 9, 25 (2017).
[139] D. Kireev, S. Seyock, J. Lewen, V. Maybeck, B. Wolfrum et al., Graphene multielectrode arrays as a versatile tool for extracellular measurements. Adv. Healthc. Mater. 6, 1601433 (2017).
[140] P.D. Nguyen, F. Ding, S.A. Fischer, W. Liang, X. Li, Solvated first-principles excited-state charge-transfer dynamics with time-dependent polarizable continuum model and solvent dielectric relaxation. J. Phys. Chem. Lett. 3, 2898–2904 (2012).
[141] L.H. Hess, C. Becker-Freyseng, M.S. Wismer, B.M. Blaschke, M. Lottner et al., Electrical coupling between cells and graphene transistors. Small 11, 1703–1710 (2015).
[142] F. Veliev, A. Cresti, D. Kalita, A. Bourrier, T. Belloir et al., Sensing ion channel in neuron networks with graphene field effect transistors. 2D Mater. 5, 045020 (2018).
[143] J. Chen, D. Chen, Y. Xie, T. Yuan, X. Chen, Progress of microfluidics for biology and medicine. Nano-Micro Lett. 5, 66–80 (2013).
[144] V. Dupuit, O. Terral, G. Bres, A. Claudel, B. Fernandez et al., A multifunctional hybrid graphene and microfluidic platform to interface topological neuron networks. Adv. Funct. Mater. 32, 2207001 (2022).
[145] J.A. Huang, V. Caprettini, Y. Zhao, G. Melle, N. Maccaferri et al., On-demand intracellular delivery of single particles in single cells by 3D hollow nanoelectrodes. Nano Lett. 19, 722–731 (2019).
[146] V. Caprettini, J.A. Huang, F. Moia, A. Jacassi, C.A. Gonano et al., Enhanced Raman investigation of cell membrane and intracellular compounds by 3D plasmonic nanoelectrode arrays. Adv. Sci. 5, 1800560 (2018).
[147] M. Donnelly, D. Mao, J. Park, G. Xu, Graphene field-effect transistors: the road to bioelectronics. J. Phys. D Appl. Phys. 51, 493001 (2018).
[148] D. Xu, Z. Hu, J. Su, F. Wu, W. Yuan, Micro and nanotechnology for intracellular delivery therapy protein. Nano-Micro Lett. 4, 118–123 (2012).
[149] L. Raes, S. Stremersch, J.C. Fraire, T. Brans, G. Goetgeluk et al., Intracellular delivery of mRNA in adherent and suspension cells by vapor nanobubble photoporation. Nano-Micro Lett. 12, 185 (2020).
[150] H. Yin, W. Jiang, Y. Liu, D. Zhang, F. Wu et al., Advanced near-infrared light approaches for neuroimaging and neuromodulation. BMEMat 1, e12023 (2023).
[151] C. Lin, X. Li, T. Wu, J. Xu, Z. Gong et al., Optofluidic identification of single microorganisms using fiber-optical-tweezer-based Raman spectroscopy with artificial neural network. BMEMat 1, e12007 (2023).
[152] H. Song, M. Kim, E. Kim, J. Lee, I. Jeong et al., Neuromodulation of the peripheral nervous system: Bioelectronic technology and prospective developments. BMEMat 1, e12048 (2023).
[153] Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15, 55 (2023).
[154] B. Hou, X. Liu, Stretching boundaries in neurophysiological monitoring. BMEMat 1, e12054 (2023).