• Laser & Optoelectronics Progress
  • Vol. 60, Issue 15, 1530002 (2023)
Da Xu, Jun Pan, Lijun Jiang*, and Yu Cao
Author Affiliations
  • Key College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, Jilin, China
  • show less
    DOI: 10.3788/LOP222050 Cite this Article Set citation alerts
    Da Xu, Jun Pan, Lijun Jiang, Yu Cao. Typical Feature Classification and Identification Method Based on Hyperspectral Data[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1530002 Copy Citation Text show less
    References

    [1] Du P J, Xia J S, Xue Z H et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 20, 236-256(2016).

    [2] Li R P. Research progress analysis of hyperspectral remote sensing classification in forestry[J]. Journal of Anhui Agricultural Sciences, 42, 2801-2805(2014).

    [3] Shi F F, Gao X H, Yang L Y et al. Research on typical crop classification based on HJ-1A hyperspectral data in the Huangshui River Basin[J]. Remote Sensing Technology and Application, 32, 206-217(2017).

    [4] Qian J, Guo Y K, Zhang Q et al. Pollution classification of heavy metals Pb and Cd in mining area based on hyperspectral[J]. Bulletin of Surveying and Mapping, 82-84, 89(2019).

    [5] Wang Y C, Zhang X S, Li H M. Tree species classification based on measured hyperspectral data[J]. Journal of North China Institute of Aerospace Engineering, 31, 4-7, 16(2021).

    [6] Yu J, Li X M, Zhang Q et al. Classification of typical vegetation in Taihu Lake lakeside based on measured hyperspectral data[J]. Jiangsu Agricultural Sciences, 45, 240-244(2017).

    [7] Li R P, Huang K, Huang H G. Leaf classification of main tree species in Jiaohe of Jilin with hyperspectral data[J]. Journal of Northeast Forestry University, 43, 48-55(2015).

    [8] Mollot L A, Munro D, Bilby R E. Classifying fine-scale spatial structure of riparian forests using hyperspectral high-resolution remotely sensed imagery at the Cedar River municipal watershed in western Washington, USA[J]. Canadian Journal of Remote Sensing, 33, 99-108(2007).

    [9] Mirik M, Ansley R J, Steddom K et al. Remote distinction of A noxious weed (musk thistle: CarduusNutans) using airborne hyperspectral imagery and the support vector machine classifier[J]. Remote Sensing, 5, 612-630(2013).

    [10] Mansour K, Mutanga O, Everson T et al. Discriminating indicator grass species for rangeland degradation assessment using hyperspectral data resampled to AISA Eagle resolution[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 56-65(2012).

    [11] Banskota A, Wynne R H, Kayastha N. Improving within-genus tree species discrimination using the discrete wavelet transform applied to airborne hyperspectral data[J]. International Journal of Remote Sensing, 32, 3551-3563(2011).

    [12] Pu R L. Broadleaf species recognition with in situ hyperspectral data[J]. International Journal of Remote Sensing, 30, 2759-2779(2009).

    [13] Zeng S, Kuang R Y, Xiao Y et al. Measured hyperspectral data classification of Poyang Lake wetland vegetation[J]. Remote Sensing Information, 32, 75-81(2017).

    [14] Meza Ramirez C A, Greenop M, Ashton L et al. Applications of machine learning in spectroscopy[J]. Applied Spectroscopy Reviews, 56, 733-763(2021).

    [15] Li Q X, Wang Q H, Ma M H et al. Non-destructive detection of male and female information of early duck embryos based on visible/near infrared spectroscopy and deep learning[J]. Spectroscopy and Spectral Analysis, 41, 1800-1805(2021).

    [16] Lu M Y, Yang K, Song P F et al. The study of classification modeling method for near infrared spectroscopy of tobacco leaves based on convolution neural network[J]. Spectroscopy and Spectral Analysis, 38, 3724-3728(2018).

    [17] Le B T. Application of deep learning and near infrared spectroscopy in cereal analysis[J]. Vibrational Spectroscopy, 106, 103009(2020).

    [18] Guo Q, Peng L. Hyperspectral classification based on 3D convolutional neural network and super pixel segmentation[J]. Acta Optica Sinica, 41, 2210001(2021).

    [19] Bai H X, Yang F, Li D Y et al. Multi-component substance classification and recognition based on surface-enhanced Raman spectroscopy[J]. Acta Optica Sinica, 41, 2024001(2021).

    [20] Zhang X D, Wang T J, Zhu S J et al. Hyperspectral image classification based on dilated convolutional attention neural network[J]. Acta Optica Sinica, 41, 0310001(2021).

    [21] 等可见、近红外光谱和深度学习CNN-ELM算法的煤炭分类[J]. 光谱学与光谱分析, 38, 2107-2112(2018).

         Tuan L B, Tuan LeBa, 肖冬, Xiao D, 毛亚纯, Mao Y C et al. Coal classification based on visible, near-infrared spectroscopy and CNN-ELM algorithm[J]. Spectroscopy and Spectral Analysis, 38, 2107-2112(2018).

    [22] Wang C, Wu X H, Li L Q et al. Convolutional neural network application in prediction of soil moisture content[J]. Spectroscopy and Spectral Analysis, 38, 36-41(2018).

    [23] Rong D, Wang H Y, Ying Y B et al. Peach variety detection using VIS-NIR spectroscopy and deep learning[J]. Computers and Electronics in Agriculture, 175, 105553(2020).

    [24] He Y, Liu F, Li X L[M]. Application of spectral imaging technology in agriculture, 130(2016).

    Da Xu, Jun Pan, Lijun Jiang, Yu Cao. Typical Feature Classification and Identification Method Based on Hyperspectral Data[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1530002
    Download Citation