• Nano-Micro Letters
  • Vol. 16, Issue 1, 103 (2024)
Junji Ren, Zibin Zhang, Shuo Geng, Yuxi Cheng..., Huize Han, Zhipu Fan, Wenbing Dai, Hua Zhang, Xueqing Wang, Qiang Zhang* and Bing He**|Show fewer author(s)
Author Affiliations
  • Department of Pharmaceutics School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Haidian District, Beijing 100191, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01313-0 Cite this Article
    Junji Ren, Zibin Zhang, Shuo Geng, Yuxi Cheng, Huize Han, Zhipu Fan, Wenbing Dai, Hua Zhang, Xueqing Wang, Qiang Zhang, Bing He. Molecular Mechanisms of Intracellular Delivery of Nanoparticles Monitored by an Enzyme-Induced Proximity Labeling[J]. Nano-Micro Letters, 2024, 16(1): 103 Copy Citation Text show less
    References

    [1] J. Bao, Q. Zhang, T. Duan, R. Hu, J. Tang, The fate of nanoparticles in vivo and the strategy of designing stealth nanoparticle for drug delivery. Curr. Drug Targets 22, 922–946 (2021).

    [2] E.D. Pereira, D.L. da Silva, T.F. Paiva, L.L. de Almeida Carvalho, H.V. Rocha, J.C. Pinto, In vitro release and in vivo pharmacokinetics of praziquantel loaded in different polymer particles. Materials 16(9), 3382 (2023).

    [3] W. Byoun, M. Jang, H. Yoo, Fabrication of highly fluorescent multiple Fe3O4 nanoparticles core-silica shell nanoparticles. J. Nanopart. Res. 21, 1 (2018).

    [4] D. Yang, D. Liu, H. Deng, J. Zhang, M. Qin et al., Transferrin functionization elevates transcytosis of nanogranules across epithelium by triggering polarity-associated transport flow and positive cellular feedback loop. ACS Nano 13, 5058–5076 (2019).

    [5] J. Zhang, M. Qin, D. Yang, L. Yuan, X. Zou et al., Nanoprotein interaction atlas reveals the transport pathway of gold nanoparticles across epithelium and its association with Wnt/β-catenin signaling. ACS Nano 15, 17977–17997 (2021).

    [6] D.O. Lopez-Cantu, X. Wang, H. Carrasco-Magallanes, S. Afewerki, X. Zhang et al., From bench to the clinic: the path to translation of nanotechnology-enabled mRNA SARS-CoV-2 vaccines. Nano-Micro Lett. 14, 41 (2022).

    [7] P. Zhang, Y. Xiao, X. Sun, X. Lin, S. Koo et al., Cancer nanomedicine toward clinical translation: obstacles, opportunities, and future prospects. Med 4, 147–167 (2023).

    [8] B. Ouyang, W. Poon, Y.-N. Zhang, Z.P. Lin, B.R. Kingston et al., The dose threshold for nanoparticle tumour delivery. Nat. Mater. 19, 1362–1371 (2020).

    [9] Y. Cheng, J. Ren, S. Fan, P. Wu, W. Cong et al., Nanoparticulates reduce tumor cell migration through affinity interactions with extracellular migrasomes and retraction fibers. Nanoscale Horiz. 7, 779–789 (2022).

    [10] Z. Zhang, J. Ren, W. Dai, H. Zhang, X. Wang et al., Fast and dynamic mapping of the protein Corona on nanoparticle surfaces by photocatalytic proximity labeling. Adv. Mater. 35, e2206636 (2023).

    [11] X. Zhang, X. Chen, Y. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14(1), 95 (2022).

    [12] A. Babu, N. Amreddy, R. Muralidharan, G. Pathuri, H. Gali et al., Chemodrug delivery using integrin-targeted PLGA-Chitosan nanoparticle for lung cancer therapy. Sci. Rep. 7, 14674 (2017).

    [13] M. Cao, R. Cai, L. Zhao, M. Guo, L. Wang et al., Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol. 16, 708–716 (2021).

    [14] E. Hinde, K. Thammasiraphop, H.T. Duong, J. Yeow, B. Karagoz et al., Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nat. Nanotechnol. 12, 81–89 (2017).

    [15] T. Hou, T. Wang, W. Mu, R. Yang, S. Liang et al., Nanoparticle-loaded polarized-macrophages for enhanced tumor targeting and cell-chemotherapy. Nano-Micro Lett. 13, 6 (2020).

    [16] C.M. Hu, R.H. Fang, K.C. Wang, B.T. Luk, S. Thamphiwatana, D. Dehaini, P. Nguyen, P. Angsantikul, C.H. Wen, A.V. Kroll, C. Carpenter, Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526(7571), 118–121 (2015).

    [17] P. Lung, J. Yang, Q. Li, Nanoparticle formulated vaccines: opportunities and challenges. Nanoscale 12, 5746–5763 (2020).

    [18] L. Xu, S. Weng, S. Li, K. Wang, Y. Shen et al., Engineering the intestinal lymphatic transport of oral nanoparticles to educate macrophages for cancer combined immunotherapy. ACS Nano 17, 11817–11837 (2023).

    [19] A.-M. Pauwels, M. Trost, R. Beyaert, E. Hoffmann, Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol. 38, 407–422 (2017).

    [20] P. Nair-Gupta, A. Baccarini, N. Tung, F. Seyffer, O. Florey et al., TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158, 506–521 (2014).

    [21] R. Levin-Konigsberg, A.R. Mantegazza, A guide to measuring phagosomal dynamics. FEBS J. 288, 1412–1433 (2021).

    [22] J. Li, S. Han, H. Li, N.D. Udeshi, T. Svinkina et al., Cell-surface proteomic profiling in the fly brain uncovers wiring regulators. Cell 180, 373-386.e15 (2020).

    [23] H.-W. Rhee, P. Zou, N.D. Udeshi, J.D. Martell, V.K. Mootha et al., Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    [24] M. Sohda, Y. Misumi, S. Ogata, S. Sakisaka, S. Hirose et al., Trans-Golgi protein p230/golgin-245 is involved in phagophore formation. Biochem. Biophys. Res. Commun. 456, 275–281 (2015).

    [25] M. Rubino, M. Miaczynska, R. Lippé, M. Zerial, Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J. Biol. Chem. 275, 3745–3748 (2000).

    [26] F. Demarchi, C. Bertoli, T. Copetti, E.-L. Eskelinen, C. Schneider, Calpain as a novel regulator of autophagosome formation. Autophagy 3, 235–237 (2007).

    [27] C. Gorbea, G. Pratt, V. Ustrell, R. Bell, S. Sahasrabudhe et al., A protein interaction network for Ecm29 links the 26 S proteasome to molecular motors and endosomal components. J. Biol. Chem. 285, 31616–31633 (2010).

    [28] L. Smalinskaitė, M.K. Kim, A.J.O. Lewis, R.J. Keenan, R.S. Hegde, Mechanism of an intramembrane chaperone for multipass membrane proteins. Nature 611, 161–166 (2022).

    [29] C.-L. Luo, X.-C. Xu, C.-J. Liu, S. He, J.-R. Chen et al., RBFOX2/GOLIM4 splicing axis activates vesicular transport pathway to promote nasopharyngeal carcinogenesis. Adv. Sci. 8, e2004852 (2021).

    [30] A.-M. Pauwels, A. Härtlova, J. Peltier, Y. Driege, G. Baudelet et al., Spatiotemporal changes of the phagosomal proteome in dendritic cells in response to LPS stimulation. Mol. Cell. Proteom. 18, 909–922 (2019).

    Junji Ren, Zibin Zhang, Shuo Geng, Yuxi Cheng, Huize Han, Zhipu Fan, Wenbing Dai, Hua Zhang, Xueqing Wang, Qiang Zhang, Bing He. Molecular Mechanisms of Intracellular Delivery of Nanoparticles Monitored by an Enzyme-Induced Proximity Labeling[J]. Nano-Micro Letters, 2024, 16(1): 103
    Download Citation