• Laser & Optoelectronics Progress
  • Vol. 60, Issue 16, 1610010 (2023)
Rujun Chen1, Yunwei Pu1,2,*, Fengzhen Wu1, Yuceng Liu1, and Qi Li1
Author Affiliations
  • 1Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • 2Computing Center, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
  • show less
    DOI: 10.3788/LOP222551 Cite this Article Set citation alerts
    Rujun Chen, Yunwei Pu, Fengzhen Wu, Yuceng Liu, Qi Li. Hyperspectral Image Classification Based on Hyperpixel Segmentation and Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1610010 Copy Citation Text show less
    Proposed CNN
    Fig. 1. Proposed CNN
    Pseudo-color image and ground object truth map of the WHU-Hi-Longkou dataset. (a) Pseudo-color image; (b) real image
    Fig. 2. Pseudo-color image and ground object truth map of the WHU-Hi-Longkou dataset. (a) Pseudo-color image; (b) real image
    Pseudo-color image and ground object truth map of the WHU-Hi-HongHu dataset. (a) Pseudo-color image; (b) real image
    Fig. 3. Pseudo-color image and ground object truth map of the WHU-Hi-HongHu dataset. (a) Pseudo-color image; (b) real image
    Spectral information segmentation results on WHU-Hi-Longkou dataset. (a) KNN; (b) SVM; (c) RF; (d) CNN; (e) ground truth
    Fig. 4. Spectral information segmentation results on WHU-Hi-Longkou dataset. (a) KNN; (b) SVM; (c) RF; (d) CNN; (e) ground truth
    Spectral information segmentation results on WHU-Hi-HongHu dataset. (a) KNN; (b) SVM; (c) RF; (d) CNN; (e) ground truth
    Fig. 5. Spectral information segmentation results on WHU-Hi-HongHu dataset. (a) KNN; (b) SVM; (c) RF; (d) CNN; (e) ground truth
    Segmentation results of different hyperpixel algorithms on WHU-Hi-Longkou dataset. (a) SLICO; (b) PCA-SLICO; (c) SLIC; (d) PCA-SLIC; (e) MSLIC; (f) PCA-MSLIC
    Fig. 6. Segmentation results of different hyperpixel algorithms on WHU-Hi-Longkou dataset. (a) SLICO; (b) PCA-SLICO; (c) SLIC; (d) PCA-SLIC; (e) MSLIC; (f) PCA-MSLIC
    Segmentation results of different hyperpixel algorithms on WHU-Hi-HongHu dataset. (a) SLICO; (b) PCA-SLICO; (c) SLIC; (d) PCA-SLIC; (e) MSLIC; (f) PCA-MSLIC
    Fig. 7. Segmentation results of different hyperpixel algorithms on WHU-Hi-HongHu dataset. (a) SLICO; (b) PCA-SLICO; (c) SLIC; (d) PCA-SLIC; (e) MSLIC; (f) PCA-MSLIC
    Classification results of different methods on WHU-Hi-Longkou dataset. (a) PMS-KNN; (b) PMS-SVM; (c) PMS-RF;(d) PMS-CNN; (e) grouth truth
    Fig. 8. Classification results of different methods on WHU-Hi-Longkou dataset. (a) PMS-KNN; (b) PMS-SVM; (c) PMS-RF;(d) PMS-CNN; (e) grouth truth
    Classification results of different methods on WHU-Hi-Longkou dataset. (a) PMS-KNN; (b) PMS-SVM; (c) PMS-RF;(d) PMS-CNN; (e) grouth truth
    Fig. 9. Classification results of different methods on WHU-Hi-Longkou dataset. (a) PMS-KNN; (b) PMS-SVM; (c) PMS-RF;(d) PMS-CNN; (e) grouth truth
    CategoryKNNSVMRFCNN
    Corn94.9398.4188.5398.45
    Cotton76.8092.0276.8095.45
    Sesame82.9698.2582.2198.70
    Round leaf soybean69.0089.6057.1690.83
    Long leaf soybean88.3096.0569.8097.91
    Rice99.2499.4864.2098.68
    Wave99.8799.8892.1899.83
    Houses and roads87.8295.3782.3494.58
    Mixed weeds85.2896.1374.1897.41
    OA /%89.8896.7782.5197.18
    Kappa coefficient /%86.9795.7878.0096.31
    Table 1. CA of different algorithms on WHU-Hi-Longkou dataset
    CategoryKNNSVMRFCNN
    Roof84.3776.0278.6792.17
    Road81.9783.5683.3978.81
    Exposed soil63.1574.4565.5073.66
    Cotton49.9067.6462.7587.36
    Cotton wood60.2178.7068.0564.24
    Rape66.5481.4072.5692.47
    Chinese cabbage45.3353.1046.3449.05
    Pakchoi38.8039.5620.9358.84
    Cabbage88.3889.1884.8188.28
    Mustard tuber38.7047.2040.4766.60
    Cauliflower31.9040.2230.3660.92
    Green vegetables56.9554.8154.3361.74
    Small green vegetables45.5649.1252.0471.80
    Asparagus lettuce61.5456.8244.3350.75
    Lettuce87.3080.4273.9182.85
    Film is covered with lettuce76.6769.8580.1482.85
    Thin film covered with lettuce78.5377.8270.3075.83
    Carrot68.3773.4068.3184.24
    Ternip68.6875.5671.6679.01
    Garlic bolt77.1380.3676.2076.94
    Bean71.1871.1076.6889.47
    Persimmon tree64.0277.3474.4787.46
    OA /%63.0272.6868.2685.43
    Kappa coefficient /%56.7867.0462.0282.10
    Table 2. CA of different algorithms on WHU-Hi-HongHu dataset
    CategoryPMS-KNNPMS-SVMPMS-RFPMS-CNN
    Corn97.7499.6494.3799.85
    Cotton83.5396.0366.1599.94
    Sesame89.9098.0683.0398.35
    Round leaf soybean76.5792.5270.8899.08
    Long leaf soybean93.8497.0276.1099.15
    Rice99.629.54099.0899.67
    Wave99.8899.8799.8599.72
    Houses and roads91.1594.7588.0495.36
    Mixed weeds86.4197.6481.5097.61
    OA /%92.7697.8089.3599.45
    Kappa coefficient /%90.6397.1086.3099.27
    Table 3. CA on WHU-Hi-Longkou dataset
    CategoryPMS-KNNPMS-SVMPMS-RFPMS-CNN
    Roof95.6280.3393.5898.38
    Road94.6083.6787.6294.02
    Exposed soil87.3691.3686.1396.33
    Cotton87.5484.4682.0098.10
    Cotton wood92.3484.3991.1899.45
    Rape87.9987.7986.4096.57
    Chinese cabbage74.9465.2672.0892.17
    Pakchoi86.6017.6077.2099.95
    Cabbage96.2891.7794.7397.60
    Mustard tuber73.4366.8676.9396.85
    Cauliflower78.0459.0087.9895.36
    Green vegetables86.7856.7585.8496.27
    Small green vegetables74.9673.1676.1497.06
    Asparagus lettuce86.9064.8087.9897.22
    Lettuce94.6667.8099.00100
    Film is covered with lettuce94.9585.5886.5599.10
    Thin film covered with lettuce95.2060.4096.84100
    Carrot94.4278.5495.6499.40
    Ternip87.0481.5486.5195.24
    Garlic bolt97.4480.7096.7398.58
    Bean99.70099.7099.70
    Persimmon tree95.8576.8699.2399.24
    OA /%88.9782.9086.8497.60
    Kappa coefficient /%86.3078.6783.8097.07
    Table 4. CA on WHU-Hi-HongHu dataset
    Rujun Chen, Yunwei Pu, Fengzhen Wu, Yuceng Liu, Qi Li. Hyperspectral Image Classification Based on Hyperpixel Segmentation and Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1610010
    Download Citation