• Laser & Optoelectronics Progress
  • Vol. 60, Issue 16, 1610010 (2023)
Rujun Chen1, Yunwei Pu1,2,*, Fengzhen Wu1, Yuceng Liu1, and Qi Li1
Author Affiliations
  • 1Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • 2Computing Center, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
  • show less
    DOI: 10.3788/LOP222551 Cite this Article Set citation alerts
    Rujun Chen, Yunwei Pu, Fengzhen Wu, Yuceng Liu, Qi Li. Hyperspectral Image Classification Based on Hyperpixel Segmentation and Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1610010 Copy Citation Text show less
    References

    [1] Tong Q X, Zhang B, Zhang L F. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 20, 689-707(2016).

    [2] Galdames F J, Perez C A, Estévez P A et al. Rock lithological instance classification by hyperspectral images using dimensionality reduction and deep learning[J]. Chemometrics and Intelligent Laboratory Systems, 224, 104538(2022).

    [3] Liang X J, Zhang Y, Zhang J P. Relative water content retrieval and refined classification of hyperspectral images based on a symbiotic neural network[J]. National Remote Sensing Bulletin, 25, 2283-2302(2021).

    [4] Lü L L, Song K S, Wen Z D et al. Estimation of the lake trophic state index (TSI) using hyperspectral remote sensing in Northeast China[J]. Optics Express, 30, 10329-10345(2022).

    [5] Gakhar S, Chandra T K. Spectral-spatial urban target detection for hyperspectral remote sensing data using artificial neural network[J]. The Egyptian Journal of Remote Sensing and Space Science, 24, 173-180(2021).

    [6] Guo T, Luo F L, Fang L Y et al. Meta-pixel-driven embeddable discriminative target and background dictionary pair learning for hyperspectral target detection[J]. Remote Sensing, 14, 481(2022).

    [7] Bruce L M, Koger C H, Jiang L. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 40, 2331-2338(2002).

    [8] Gao Q S, Xie F D, Huang D et al. Spectral and spatial reduction of hyperspectral image guided by data reconstruction and superpixels[J]. Engineering Applications of Artificial Intelligence, 111, 104803(2022).

    [9] Fu Q Y, Yu X C, Wei X P et al. Semi-supervised classification of hyperspectral imagery based on stacked autoencoders[J]. Proceedings of SPIE, 10033, 100332B(2016).

    [10] Chen C, Ma Y, Ren G B. Hyperspectral classification using deep belief networks based on conjugate gradient update and pixel-centric spectral block features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4060-4069(2020).

    [11] Roy S K, Krishna G, Dubey S R et al. HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 17, 277-281(2020).

    [12] Qu S M, Li X, Gan Z H. A new hyperspectral image classification method based on spatial-spectral features[J]. Scientific Reports, 12, 1541(2022).

    [13] Zhang X D, Wang T J, Zhu S J et al. Hyperspectral image classification based on dilated convolutional attention neural network[J]. Acta Optica Sinica, 41, 0310001(2021).

    [14] Achanta R, Shaji A, Smith K et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 2274-2282(2012).

    [15] Yu H Y, Gao L R, Liao W Z et al. Multiscale superpixel-level subspace-based support vector machines for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 14, 2142-2146(2017).

    [16] Tu B, Zhou C L, Liao X L et al. Spectral-spatial hyperspectral classification via structural-kernel collaborative representation[J]. IEEE Geoscience and Remote Sensing Letters, 18, 861-865(2021).

    [17] Jijón Palma M E, Lima Machado A M, Silva Centeno J A. Dimensionality reduction based on binary encoding for hyperspectral data[J]. International Journal of Remote Sensing, 40, 3401-3420(2019).

    [18] Zhao C H, Qin B A, Feng S et al. Multiple superpixel graphs learning based on adaptive multiscale segmentation for hyperspectral image classification[J]. Remote Sensing, 14, 681(2022).

    [19] Chen S X, He Y F. Weighted joint sparse representation hyperspectral image classification based on spatial-spectral dictionary[J]. Acta Optica Sinica, 43, 0110002(2023).

    [20] Liu J X, Ban W, Chen Y et al. Multi-dimensional CNN fused algorithm for hyperspectral remote sensing image classification[J]. Chinese Journal of Lasers, 48, 1610003(2021).

    [21] Han M L, Hou W M, Sun J G et al. Hyperspectral image classification algorithm based on PCA and collaborative representation[J]. Journal of University of Electronic Science and Technology of China, 48, 117-121(2019).

    [22] Zhang Z L, Li A H, Li C W. Superpixel segmentation based on clustering by finding density peaks[J]. Chinese Journal of Computers, 43, 1-15(2020).

    [23] Achanta R, Shaji A, ASmith K et al. SLIC Superpixels compared to state of the art superpixel methods[J]. IEE Transactions Pattern Analysis & Machine Intellingence, 347, 2274-2282(2012).

    [24] Li H, Feng R Y, Wang L Z et al. Superpixel-based reweighted low-rank and total variation sparse unmixing for hyperspectral remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 629-647(2021).

    [25] Yu H Y, Xu Z, Wang Yu L et al. The use of KPCA over subspaces for cross-scale superpixel based hyperspectral image classification[J]. Remote Sensing Letters, 12, 470-477(2021).

    [26] Sang H T, Xiang L, Chen S F et al. Image recognition based on multiscale pooling deep convolution neural networks[J]. Complexity, 2020, 6180317(2020).

    [27] Li D M, Deng L B, Cai Z M. Research on image classification method based on convolutional neural network[J]. Neural Computing and Applications, 33, 8175-8167(2021).

    [28] Yu D H, Guo H T, Zhang B M et al. Aircraft detection in remote sensing images using cascade convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 48, 1046-1058(2019).

    [29] Shan J C, Li X Z, Jia S M et al. Semantic segmentation based on deep convolution neural network[J]. Journal of Physics Conference Series, 1069, 012169(2018).

    Rujun Chen, Yunwei Pu, Fengzhen Wu, Yuceng Liu, Qi Li. Hyperspectral Image Classification Based on Hyperpixel Segmentation and Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1610010
    Download Citation