• Nano-Micro Letters
  • Vol. 16, Issue 1, 074 (2024)
Jin Wu, Yang Tang, Haohang Xu, Guandie Ma..., Jinhong Jiang, Changpeng Xian, Maowen Xu, Shu-Juan Bao* and Hao Chen**|Show fewer author(s)
Author Affiliations
  • Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01296-y Cite this Article
    Jin Wu, Yang Tang, Haohang Xu, Guandie Ma, Jinhong Jiang, Changpeng Xian, Maowen Xu, Shu-Juan Bao, Hao Chen. ZnO Additive Boosts Charging Speed and Cycling Stability of Electrolytic Zn–Mn Batteries[J]. Nano-Micro Letters, 2024, 16(1): 074 Copy Citation Text show less
    References

    [1] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    [2] A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun et al., Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3, 2620–2640 (2018).

    [3] M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018).

    [4] X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795–7866 (2020).

    [5] P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61, 2200598 (2022).

    [6] Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2022).

    [7] M. Wang, J. Ma, Y. Meng, J. Sun, Y. Yuan et al., High-capacity zinc anode with 96 % utilization rate enabled by solvation structure design. Angew. Chem. Int. Ed. 62, e202214966 (2023).

    [8] J. Yi, S. Guo, P. He, H. Zhou, Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries. Energy Environ. Sci. 10, 860–884 (2017).

    [9] J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021).

    [10] J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022).

    [11] H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    [12] Z. Yuan, Q. Lin, Y. Li, W. Han, L. Wang, Effects of multiple ion reactions based on a CoSe2/MXene cathode in aluminum-ion batteries. Adv. Mater. 35, e2211527 (2023).

    [13] Q. Lin, L. Wang, Layered double hydroxides as electrode materials for flexible energy storage devices. J. Semicond. 44, 041601 (2023).

    [14] G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang et al., Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29, 1808375 (2019).

    [15] K. Sada, B. Senthilkumar, P. Barpanda, Cryptomelane K1.33Mn8O16 as a cathode for rechargeable aqueous zinc-ion batteries. J. Mater. Chem. A 7, 23981–23988 (2019).

    [16] Y. Huang, J. Mou, W. Liu, X. Wang, L. Dong et al., Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+. Nano-Micro Lett. 11, 49 (2019).

    [17] V. Soundharrajan, B. Sambandam, S. Kim, S. Islam, J. Jo et al., The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Storage Mater. 28, 407–417 (2020).

    [18] X. Shen, X. Wang, Y. Zhou, Y. Shi, L. Zhao et al., Highly reversible aqueous Zn–MnO2 battery by supplementing Mn2+-mediated MnO2 deposition and dissolution. Adv. Funct. Mater. 31, 2101579 (2021).

    [19] H. Chen, S. Cai, Y. Wu, W. Wang, M. Xu et al., Successive electrochemical conversion reaction to understand the performance of aqueous Zn/MnO2 batteries with Mn2+ additive. Mater. Today Energy 20, 100646 (2021).

    [20] H. Yang, W. Zhou, D. Chen, J. Liu, Z. Yuan, M. Lu, D. Chao, The origin of capacity fluctuation and rescue of dead Mn-based Zn–ion batteries: a Mn-based competitive capacity evolution protocol. Energy Environ. Sci. 15(3), 1106–1118 (2022).

    [21] T. Xue, H.J. Fan, From aqueous Zn-ion battery to Zn–MnO2 flow battery: a brief story. J. Energy Chem. 54, 194–201 (2021).

    [22] H. Chen, H. Kuang, F. Liu, Y. Wu, S. Cai et al., A self-healing neutral aqueous rechargeable Zn/MnO2 battery based on modified carbon nanotubes substrate cathode. J. Colloid Interface Sci. 600, 83–89 (2021).

    [23] X. Guo, J. Zhou, C. Bai, X. Li, G. Fang et al., Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 16, 100396 (2020).

    [24] M. Han, L. Qin, Z. Liu, L. Zhang, X. Li et al., Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Mater. Today Energy 20, 100626 (2021).

    [25] B. Sambandam, V. Mathew, S. Kim, S. Lee, S. Kim et al., An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. Chem 8, 924–946 (2022).

    [26] D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. Engl. 58, 7823–7828 (2019).

    [27] D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32, e2001894 (2020).

    [28] C. Liu, X. Chi, Q. Han, Y. Liu, A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv. Energy Mater. 10, 1903589 (2020).

    [29] C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy 5, 440–449 (2020).

    [30] P. Ruan, X. Chen, L. Qin, Y. Tang, B. Lu et al., Achieving highly proton-resistant Zn–Pb anode through low hydrogen affinity and strong bonding for long-life electrolytic Zn//MnO2 battery. Adv. Mater. 35, e2300577 (2023).

    [31] M. Chuai, J. Yang, R. Tan, Z. Liu, Y. Yuan et al., Theory-driven design of a cationic accelerator for high-performance electrolytic MnO2-Zn batteries. Adv. Mater. 34, e2203249 (2022).

    [32] Y. Yuan, J. Yang, Z. Liu, R. Tan, M. Chuai et al., A proton-barrier separator induced via hofmeister effect for high-performance electrolytic MnO2–Zn batteries. Adv. Energy Mater. 12, 2103705 (2022).

    [33] M. Wang, X. Zheng, X. Zhang, D. Chao, S.-Z. Qiao et al., Opportunities of aqueous manganese-based batteries with deposition and stripping chemistry. Adv. Energy Mater. 11, 2002904 (2021).

    [34] C. Dai, L. Hu, X. Jin, Y. Zhao, L. Qu, The emerging of aqueous zinc-based dual electrolytic batteries. Small 17, e2008043 (2021).

    [35] H. Yang, T. Zhang, D. Chen, Y. Tan, W. Zhou et al., Protocol in evaluating capacity of Zn–Mn aqueous batteries: a clue of pH. Adv. Mater. 35, e2300053 (2023).

    [36] C. Xie, T. Li, C. Deng, Y. Song, H. Zhang et al., A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 13, 135–143 (2020).

    [37] H. Moon, K.H. Ha, Y. Park, J. Lee, M.S. Kwon et al., Direct proof of the reversible dissolution/deposition of Mn2+/Mn4+ for mild-acid Zn–MnO2 batteries with porous carbon interlayers. Adv. Sci. 8, 2003714 (2021).

    [38] H. Chen, C. Dai, F. Xiao, Q. Yang, S. Cai et al., Reunderstanding the reaction mechanism of aqueous Zn–Mn batteries with sulfate electrolytes: role of the zinc sulfate hydroxide. Adv. Mater. 34, e2109092 (2022).

    [39] M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004).

    [40] X. Li, C. Ji, J. Shen, J. Feng, H. Mi et al., Amorphous heterostructure derived from divalent manganese borate for ultrastable and ultrafast aqueous zinc ion storage. Adv. Sci. 10, e2205794 (2023).

    [41] N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017).

    [42] X. Zhang, S. Deng, Y. Zeng, M. Yu, Y. Zhong et al., Oxygen defect modulated titanium niobium oxide on graphene arrays: an open-door for high-performance 1.4 V symmetric supercapacitor in acidic aqueous electrolyte. Adv. Funct. Mater. 28, 1805618 (2018).

    [43] S. Deng, Y. Zhang, D. Xie, L. Yang, G. Wang et al., Oxygen vacancy modulated Ti2Nb10O29-x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. Nano Energy 58, 355–364 (2019).

    [44] M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song et al., Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015).

    [45] Y. Zhang, S. Deng, M. Luo, G. Pan, Y. Zeng et al., Defect promoted capacity and durability of N-MnO2-x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small 15, e1905452 (2019).

    [46] J. Ji, H. Wan, B. Zhang, C. Wang, Y. Gan et al., Co2+/3+/4+-regulated electron state of Mn–O for superb aqueous zinc-manganese oxide batteries. Adv. Energy Mater. 11, 2003203 (2021).

    [47] S. Islam, M.H. Alfaruqi, V. Mathew, J. Song, S. Kim et al., Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 5, 23299–23309 (2017).

    [48] Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8, 1801445 (2018).

    Jin Wu, Yang Tang, Haohang Xu, Guandie Ma, Jinhong Jiang, Changpeng Xian, Maowen Xu, Shu-Juan Bao, Hao Chen. ZnO Additive Boosts Charging Speed and Cycling Stability of Electrolytic Zn–Mn Batteries[J]. Nano-Micro Letters, 2024, 16(1): 074
    Download Citation