[1] Xi T Y, Yuan L H, Sun Q B. A combined approach to infrared small-target detection with the alternating direction method of multipliers and an improved top-hat transformation[J]. Sensors, 22, 7327(2022).
[2] Deshpande S D, Er M H, Venkateswarlu R et al. Max-Mean and max-Median filters for detection of small targets[J]. Proceedings of SPIE, 3809, 74-83(1999).
[3] Gregoris D J, Yu S K W, Tritchew S et al. Wavelet transform-based filtering for the enhancement of dim targets in FLIR images[J]. Proceedings of SPIE, 2242, 573-583(1994).
[4] Zeng M, Li J, Peng Z. The design of Top-Hat morphological filter and application to infrared target detection[J]. Infrared Physics & Technology, 48, 67-76(2006).
[5] Chen T, Wu Q H, Rahmani-Torkaman R et al. A pseudo top-hat mathematical morphological approach to edge detection in dark regions[J]. Pattern Recognition, 35, 199-210(2002).
[6] Bai X Z, Zhou F, Xue B. Infrared dim small target enhancement using toggle contrast operator[J]. Infrared Physics & Technology, 55, 177-182(2012).
[7] Bai X Z, Zhou F. Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition, 43, 2145-2156(2010).
[8] Gao C Q, Meng D Y, Yang Y et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 22, 4996-5009(2013).
[9] Dai Y M, Wu Y Q. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 3752-3767(2017).
[10] Zhang L D, Peng Z M. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing, 11, 382(2019).
[11] Chen C L P, Li H, Wei Y T et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 52, 574-581(2014).
[12] Han J H, Liang K, Zhou B et al. Infrared small target detection utilizing the multiscale relative local contrast measure[J]. IEEE Geoscience and Remote Sensing Letters, 15, 612-616(2018).
[13] Shi Y F, Wei Y T, Yao H et al. High-boost-based multiscale local contrast measure for infrared small target detection[J]. IEEE Geoscience and Remote Sensing Letters, 15, 33-37(2018).
[14] Wei Y T, You X, Li H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 58, 216-226(2016).
[15] Deng H, Sun X P, Liu M L et al. Infrared small-target detection using multiscale gray difference weighted image entropy[J]. IEEE Transactions on Aerospace and Electronic Systems, 52, 60-72(2016).
[16] Moradi S, Moallem P, Sabahi M F. A false-alarm aware methodology to develop robust and efficient multi-scale infrared small target detection algorithm[J]. Infrared Physics & Technology, 89, 387-397(2018).
[17] Moradi S, Moallem P, Sabahi M F. Fast and robust small infrared target detection using absolute directional mean difference algorithm[J]. Signal Processing, 177, 107727(2020).
[18] Han J H, Moradi S, Faramarzi I et al. A local contrast method for infrared small-target detection utilizing a tri-layer window[J]. IEEE Geoscience and Remote Sensing Letters, 17, 1822-1826(2020).
[19] Boyer V, Bourdin J J. Auto-adaptive step straight-line algorithm[J]. IEEE Computer Graphics and Applications, 20, 67-69(2000).
[20] Zhang L D, Peng L B, Zhang T F et al. Infrared small target detection via non-convex rank approximation minimization joint l2,1 norm[J]. Remote Sensing, 10, 1821(2018).
[21] Xu L, Wei Y, Zhang H et al. Robust and fast infrared small target detection based on Pareto frontier optimization[J]. Infrared Physics & Technology, 123, 104192(2022).
[22] Deng H, Sun X, Liu M et al. Entropy-based window selection for detecting dim and small infrared targets[J]. Pattern Recognition, 61, 66-77(2017).