• Journal of Advanced Dielectrics
  • Vol. 14, Issue 5, 2350030 (2024)
Anton P. Turygin1,*, Vera A. Shikhova1, Mikhail S. Kosobokov1, Andrey R. Akhmatkhanov1..., Olga N. Sergeeva2 and Vladimir Ya. Shur1|Show fewer author(s)
Author Affiliations
  • 1School of Natural Sciences and Mathematics, Ural Federal University, Lenin Ave. 51, Ekaterinburg 620000, Russia
  • 2Tver State University, Zhelyabova str. 33, Tver 170000, Russia
  • show less
    DOI: 10.1142/S2010135X23500303 Cite this Article
    Anton P. Turygin, Vera A. Shikhova, Mikhail S. Kosobokov, Andrey R. Akhmatkhanov, Olga N. Sergeeva, Vladimir Ya. Shur. Self-organized formation of domain arrays in TGS crystal by moving SPM tip[J]. Journal of Advanced Dielectrics, 2024, 14(5): 2350030 Copy Citation Text show less
    References

    [1] D. S. Hum, M. M. Fejer. Quasi-phasematching. Comptes Rendus Phys., 8, 180(2007). https://doi.org/10.1016/j.crhy.2006.10.022

    [2] X. Feng, M. Wang, L. Li, Z. Yang, M. Cao, Z.-Y. Cheng. Enhanced thermal and pyroelectric properties in 0–3 TGS:PVDF composites doped with graphene for infrared application. J. Adv. Dielectr., 7, 1750006(2017). https://doi.org/10.1142/S2010135X17500060

    [3] R. W. Whatmore. Pyroelectric devices and materials. Rep. Prog. Phys., 49, 1335(1986). https://doi.org/10.1088/0034-4885/49/12/002

    [4] H. Ishiwara. Ferroelectric random access memories. J. Nanosci. Nanotechnol., 12, 7619(2012). https://doi.org/10.1166/jnn.2012.6651

    [5] J. F. Scott. Applications of modern ferroelectrics. Science, 315, 954(2007). https://doi.org/10.1126/science.1129564

    [6] P. Sharma, T. S. Moise, L. Colombo, J. Seidel. Roadmap for ferroelectric domain wall nanoelectronics. Adv. Funct. Mater., 32, 2110263(2022). https://doi.org/10.1002/adfm.202110263

    [7] G. Catalan, J. Seidel, R. Ramesh, J. F. Scott. Domain wall nanoelectronics. Rev. Mod. Phys., 84, 119(2012). https://doi.org/10.1103/RevModPhys.84.119

    [8] V. Ya. Shur, E. V. Pelegova, M. S. Kosobokov. Domain shapes in bulk uniaxial ferroelectrics. Ferroelectrics, 569, 251(2020). https://doi.org/10.1080/00150193.2020.1822689

    [9] V. Ya. Shur, A. R. Akhmatkhanov, I. S. Baturin. Micro- and nano-domain engineering in lithium niobate. Appl. Phys. Rev., 2, 040604(2015). https://doi.org/10.1063/1.4928591

    [10] P. S. Bednyakov, B. I. Sturman, T. Sluka, A. K. Tagantsev, P. V. Yudin. Physics and applications of charged domain walls. Npj Comput. Mater., 4, 65(2018). https://doi.org/10.1038/s41524-018-0121-8

    [11] G. F. Nataf, M. Guennou, J. M. Gregg, D. Meier, J. Hlinka, E. K. H. Salje, J. Kreisel. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat. Rev. Phys., 2, 634(2020). https://doi.org/10.1038/s42254-020-0235-z

    [12] S. Wang, S. Liu, D. Liu, N. Wang, R. Zhao, Y. Liu, Z. Li, G. Mao, F. Chen, Y. Sheng, T. Xu, W. Krolikowski. Ferroelectric domain engineering with femtosecond pulses of different wavelengths. Opt. Exp., 31, 5843(2023). https://doi.org/10.1364/OE.483162

    [13] D. Meier, S. M. Selbach. Ferroelectric domain walls for nanotechnology. Nat. Rev. Mater., 7, 157(2022). https://doi.org/10.1038/s41578-021-00375-z

    [14] S. Gorfman, H. Choe, V. V. Shvartsman, M. Ziolkowski, M. Vogt, J. Strempfer, T. Lukasiewicz, U. Pietsch, J. Dec. Time-resolved X-ray diffraction reveals the hidden mechanism of high piezoelectric activity in a uniaxial ferroelectric. Phys. Rev. Lett., 114, 097601(2015). https://doi.org/10.1103/PhysRevLett.114.097601

    [15] B. N. Slautin, H. Zhu, V. Ya. Shur. Submicron periodical poling in Z-cut lithium niobate thin films. Ferroelectrics, 576, 119(2021). https://doi.org/10.1080/00150193.2021.1888270

    [16] R. C. Desai, R. Kapral. Dynamics of Self-Organized and Self-Assembled Structures(2009). https://doi.org/10.1017/CBO9780511609725

    [17] A. A. Esin, A. R. Akhmatkhanov, V. Ya. Shur. Analogy between growth of crystals and ferroelectric domains. Application of Wulff construction. J. Cryst. Growth, 526, 125236(2019). https://doi.org/10.1016/j.jcrysgro.2019.125236

    [18] C. Godau, T. Kämpfe, A. Thiessen, L. M. Eng, A. Haußmann. enhancing the domain wall conductivity in lithium niobate single crystals. ACS Nano, 11, 4816(2017). https://doi.org/10.1021/acsnano.7b01199

    [19] M. Lilienblum, E. Soergel. Anomalous domain inversion in LiNbO3 single crystals investigated by scanning probe microscopy. J. Appl. Phys., 110, 052018(2011). https://doi.org/10.1063/1.3623775

    [20] A. Agronin, M. Molotskii, Y. Rosenwaks, G. Rosenman, B. J. Rodriguez, A. I. Kingon, A. Gruverman. Dynamics of ferroelectric domain growth in the field of atomic force microscope. J. Appl. Phys., 99, 104102(2006). https://doi.org/10.1063/1.2197264

    [21] Q. Li, Y. Liu, R. L. Withers, Y. Wan, Z. Li, Z. Xu. Piezoresponse force microscopy studies on the domain structures and local switching behavior of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. J. Appl. Phys., 112, 052006(2012). https://doi.org/10.1063/1.4745979

    [22] D. O. Alikin, A. V. Ievlev, A. P. Turygin, A. I. Lobov, S. V. Kalinin, V. Ya. Shur. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals. Appl. Phys. Lett., 106, 182902(2015). https://doi.org/10.1063/1.4919872

    [23] V. Ya. Shur, E. V. Pelegova, A. P. Turygin, M. S. Kosobokov, Yu. M. Alikin. Forward growth of ferroelectric domains with charged domain walls. Local switching on non-polar cuts. J. Appl. Phys., 129, 044103(2021). https://doi.org/10.1063/5.0037680

    [24] A. Gruverman, M. Alexe, D. Meier. Piezoresponse force microscopy and nanoferroic phenomena. Nat. Commun., 10, 1661(2019). https://doi.org/10.1038/s41467-019-09650-8

    [25] S. Jesse, A. P. Baddorf, S. V. Kalinin. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett., 88, 062908(2006). https://doi.org/10.1063/1.2172216

    [26] V. Ya. Shur, M. S. Kosobokov, A. V. Makaev, D. K. Kuznetsov, M. S. Nebogatikov, D. S. Chezganov, E. A. Mingaliev. Dimensionality increase of ferroelectric domain shape by pulse laser irradiation. Acta Mater., 219, 117270(2021). https://doi.org/10.1016/j.actamat.2021.117270

    [27] A. A. Esin, A. R. Akhmatkhanov, V. Ya. Shur. Tilt control of the charged domain walls in lithium niobate. Appl. Phys. Lett., 114, 092901(2019). https://doi.org/10.1063/1.5079478

    [28] B. Březina, M. Havránková. Orientation of structure and crystals of TGS and TGS doped with D, al or L, al. Cryst. Res. Technol., 20, 781(1985). https://doi.org/10.1002/crat.2170200613

    [29] E. A. Wood, A. N. Holden. Monoclinic glycine sulfate: Crystallographic data. Acta Crystallogr., 10, 145(1957). https://doi.org/10.1107/S0365110X57000481

    [30] P. J. Lock. Doped triglycine sulfate for pyroelectric applications. Appl. Phys. Lett., 19, 390(1971). https://doi.org/10.1063/1.1653742

    [31] M. Banan, R. B. Lal, A. Batra. Modified triglycine sulphate (TGS) single crystals for pyroelectric infrared detector applications. J. Mater. Sci., 27, 2291(1992). https://doi.org/10.1007/BF01105034

    [32] P. Felix, P. Gamot, P. Lacheau, Y. Raverdy. Pyroelectric, dielectric and thermal properties of TGS, DTGS and TGFB. Ferroelectrics, 17, 543(1977). https://doi.org/10.1080/00150197808236779

    [33] H. He, X. Lu, E. Hanc, C. Chen, H. Zhang, L. Lu. Advances in lead-free pyroelectric materials: A comprehensive review. J. Mater. Chem. C, 8, 1494(2020). https://doi.org/10.1039/C9TC05222D

    [34] V. Likodimos, M. Labardi, M. Allegrini. Kinetics of ferroelectric domains investigated by scanning force microscopy. Phys. Rev. B, 61, 14440(2000). https://doi.org/10.1103/PhysRevB.61.14440

    [35] O. M. Golitsyna, S. N. Drozhdin, V. O. Chulakova, M. N. Grechkina. Evolution of the domain structure of triglycine sulphate single crystal in the vicinity of phase transition. Ferroelectrics, 506, 127(2017). https://doi.org/10.1080/00150193.2017.1282286

    [36] J. Hatano, F. Suda, H. Futama. Domain-wall orientations and domain shapes of ferroelectric TGS and TGSe crystals. Ferroelectrics, 20, 265(1978). https://doi.org/10.1080/00150197808237232

    [37] N. Nakatani. Observation of ferroelectric domain structure in TGS. Ferroelectrics, 413, 238(2011). https://doi.org/10.1080/00150193.2011.554269

    [38] M.-K. Bae, K. Hara, H. Okabe, S. Kai, Y. Ishibashi. AFM observation of ferroelectric domains on TGS cleavage surface. J. Phys. Soc. Japan, 65, 2401(1996). https://doi.org/10.1143/JPSJ.65.2401

    [39] L. M. Eng, M. Friedrich, J. Fousek, P. Günter. Scanning force microscopy of ferroelectric crystals. Ferroelectrics, 186, 49(1996). https://doi.org/10.1080/00150199608218030

    [40] M.-K. Bae, T. Horiuchi, K. Hara, Y. Ishibashi, K. Matsushige. Direct observation of domain structures in triglycine sulfate by atomic force microscope. Jpn. J. Appl. Phys., 33, 1390(1994). https://doi.org/10.1143/JJAP.33.1390

    [41] R. V. Gainutdinov, N. V. Belugina, A. L. Tolstikhina, O. A. Lysova. Multimode atomic force microscopy of triglycine sulfate crystal domain structure. Ferroelectrics, 368, 42(2008). https://doi.org/10.1080/00150190802367539

    [42] L. M. Eng, M. Abplanalp, P. Günter. Ferroelectric domain switching in tri-glycine sulphate and barium-titanate bulk single crystals by scanning force microscopy. Appl. Phys. A, 66, S679(1998). https://doi.org/10.1007/s003390051221

    [43] J. Hong, S.-I. Park, K. Nho, S.-I. Kwun, Z.-G. Khim. Observation of domain dynamics and nanoscale control of domains in ferroelectric materials with scanning probe microscope. Ferroelectrics, 229, 131(1999). https://doi.org/10.1080/00150199908224329

    [44] H. Ma, W. Gao, J. Wang, T. Wu, G. Yuan, J. Liu, Z. Liu. Ferroelectric polarization switching dynamics and domain growth of triglycine sulfate and imidazolium perchlorate. Adv. Electron. Mater., 2, 1600038(2016). https://doi.org/10.1002/aelm.201600038

    [45] H. Ma, Z. Wu, D. Peng, Y. Wang, Y. Wang, Y. Yang, G. Yuan. Anti-parallel polarization switching in a triglycine sulfate organic ferroelectric insulator: The role of surface charges. Appl. Phys. Lett., 112, 162903(2018). https://doi.org/10.1063/1.5023564

    [46] H. Ma, G. Yuan, T. Wu, Y. Wang, J.-M. Liu. Self-organized ferroelectric domains controlled by a constant bias from the atomic force microscopy tip. ACS Appl. Mater. Interfaces, 10, 40911(2018). https://doi.org/10.1021/acsami.8b13982

    [47] A. P. Turygin, M. S. Kosobokov, O. M. Golitsyna, S. N. Drozhdin, V. Ya. Shur. unusual domain growth during local switching in triglycine sulfate crystals. Appl. Phys. Lett., 119, 262902(2021). https://doi.org/10.1063/5.0077685

    [48] A. P. Turygin, V. A. Shikhova, M. S. Kosobokov, A. R. Akhmatkhanov, O. N. Sergeeva, V. Ya. Shur. Highly anisotropic tip-induced domain growth in polydomain triglycine sulfate. ACS Appl. Electron. Mater., 4, 5215(2022). https://doi.org/10.1021/acsaelm.2c00891

    [49] V. Ya. Shur, E. L. Rumyantsev. Crystal growth and domain structure evolution. Ferroelectrics, 142, 1(1993). https://doi.org/10.1080/00150199308237878

    [50] V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin. Formation and evolution of charged domain walls in congruent lithium niobate. Appl. Phys. Lett., 77, 3636(2000). https://doi.org/10.1063/1.1329327

    [51] V. Ya. Shur, I. S. Baturin, A. R. Akhmatkhanov, D. S. Chezganov, A. A. Esin. Time-dependent conduction current in lithium niobate crystals with charged domain walls. Appl. Phys. Lett., 103, 102905(2013). https://doi.org/10.1063/1.4820351

    [52] I. S. Zheludev, I. S. Zheludev. Physics of Crystalline Dielectrics, 533-620(1971). https://doi.org/10.1007/978-1-4615-8984-6_3

    Anton P. Turygin, Vera A. Shikhova, Mikhail S. Kosobokov, Andrey R. Akhmatkhanov, Olga N. Sergeeva, Vladimir Ya. Shur. Self-organized formation of domain arrays in TGS crystal by moving SPM tip[J]. Journal of Advanced Dielectrics, 2024, 14(5): 2350030
    Download Citation