• Nano-Micro Letters
  • Vol. 16, Issue 1, 091 (2024)
Wenjing Shi1, Leiyang Zhang1, Ruiyi Jing1, Yunyao Huang1..., Fukang Chen2, Vladimir Shur3, Xiaoyong Wei1, Gang Liu2,*, Hongliang Du4,** and Li Jin1,***|Show fewer author(s)
Author Affiliations
  • 1Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
  • 2School of Materials and Energy, Southwest University, Chongqing 400715, People’s Republic of China
  • 3School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620000, Russia
  • 4Multifunctional Electronic Ceramics Laboratory, College of Engineering, Xi’an International University, Xi’an 710077, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01290-4 Cite this Article
    Wenjing Shi, Leiyang Zhang, Ruiyi Jing, Yunyao Huang, Fukang Chen, Vladimir Shur, Xiaoyong Wei, Gang Liu, Hongliang Du, Li Jin. Moderate Fields, Maximum Potential: Achieving High Records with Temperature-Stable Energy Storage in Lead-Free BNT-Based Ceramics[J]. Nano-Micro Letters, 2024, 16(1): 091 Copy Citation Text show less
    References

    [1] Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao et al., Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 29, 1601727 (2017).

    [2] J. Li, F. Li, Z. Xu, S. Zhang, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 30, 1802155 (2018).

    [3] J. Li, Z. Shen, X. Chen, S. Yang, W. Zhou et al., Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. 19, 999–1005 (2020).

    [4] L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng et al., Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019).

    [5] G. Wang, Z. Lu, Y. Li, L. Li, H. Ji et al., Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121, 6124–6172 (2021).

    [6] Z. Yang, H. Du, L. Jin, D. Poelman, High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges. J. Mater. Chem. A 9, 18026–18085 (2021).

    [7] G. Liu, Y. Li, B. Guo, M. Tang, Q. Li et al., Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free Barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem. Eng. J. 398, 125625 (2020).

    [8] L. Zhang, R. Jing, Y. Huang, Q. Hu, D.O. Alikin et al., Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering. J. Materiomics 8, 527–536 (2022).

    [9] L. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014).

    [10] H.Y. Zhou, X.Q. Liu, X.L. Zhu, X.M. Chen, CaTiO3 linear dielectric ceramics with greatly enhanced dielectric strength and energy storage density. J. Am. Ceram. Soc. 101, 1999–2008 (2018).

    [11] H. Wang, Y. Liu, T. Yang, S. Zhang, Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv. Funct. Mater. 29, 1807321 (2019).

    [12] J. Lv, Q. Li, Y. Li, M. Tang, D. Jin et al., Significantly improved energy storage performance of NBT-BT based ceramics through domain control and preparation optimization. Chem. Eng. J. 420, 129900 (2021).

    [13] L. Zhang, M. Zhao, Y. Yang, Y. Li, M. Tang et al., Achieving ultrahigh energy density and ultrahigh efficiency simultaneously via characteristic regulation of polar nanoregions. Chem. Eng. J. 465, 142862 (2023).

    [14] H. Palneedi, M. Peddigari, G.-T. Hwang, D.-Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018).

    [15] L. Chen, H. Yu, J. Wu, S. Deng, H. Liu et al., Large energy capacitive high-entropy lead-free ferroelectrics. Nano-Micro Lett. 15, 65 (2023).

    [16] J. Shi, Y. Zhao, J. He, T. Li, F. Zhu et al., Deferred polarization saturation boosting superior energy-storage efficiency and density simultaneously under moderate electric field in relaxor ferroelectrics. ACS Appl. Energy Mater. 5, 3436–3446 (2022).

    [17] J. Zhao, T. Hu, Z. Fu, Z. Pan, L. Tang et al., Delayed polarization saturation induced superior energy storage capability of BiFeO3-based ceramics via introduction of non-isovalent ions. Small 19, e2206840 (2023).

    [18] W. Wang, L. Zhang, R. Jing, Q. Hu, D.O. Alikin et al., Enhancement of energy storage performance in lead-free Barium titanate-based relaxor ferroelectrics through a synergistic two-step strategy design. Chem. Eng. J. 434, 134678 (2022).

    [19] W. Wang, L. Zhang, C. Li, D.O. Alikin, V.Y. Shur et al., Effective strategy to improve energy storage properties in lead-free (Ba0.8Sr0.2)TiO3-Bi(Mg0.5Zr0.5)O3 relaxor ferroelectric ceramics. Chem. Eng. J. 446, 137389 (2022).

    [20] X. Ren, L. Jin, Z. Peng, B. Chen, X. Qiao et al., Regulation of energy density and efficiency in transparent ceramics by grain refinement. Chem. Eng. J. 390, 124566 (2020).

    [21] Z. Yang, F. Gao, H. Du, L. Jin, L. Yan et al., Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 58, 768–777 (2019).

    [22] G. Liu, Y. Li, M. Shi, L. Yu, P. Chen et al., An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability. Ceram. Int. 45, 19189–19196 (2019).

    [23] G. Liu, Y. Li, J. Gao, D. Li, L. Yu et al., Structure evolution, ferroelectric properties, and energy storage performance of CaSnO3 modified BaTiO3-based Pb-free ceramics. J. Alloys Compd. 826, 154160 (2020).

    [24] T. Wang, L. Zhang, A. Zhang, J. Liu, L. Kong et al., Synergistic enhanced energy storage performance of NBT-KBT ceramics by K0.5Na0.5NbO3 composition design. J. Alloys Compd. 948, 169725 (2023).

    [25] B. Guo, Y. Yan, M. Tang, Z. Wang, Y. Li et al., Energy storage performance of Na0.5Bi0.5TiO3 based lead-free ferroelectric ceramics prepared via non-uniform phase structure modification and rolling process. Chem. Eng. J. 420, 130475 (2021).

    [26] G. Liu, Y. Wang, G. Han, J. Gao, L. Yu et al., Enhanced electrical properties and energy storage performances of NBT-ST Pb-free ceramics through glass modification. J. Alloys Compd. 836, 154961 (2020).

    [27] L. Zhang, S. Cao, Y. Li, R. Jing, Q. Hu et al., Achieving ultrahigh energy storage performance over a broad temperature range in (Bi0.5Na0.5)TiO3-based eco-friendly relaxor ferroelectric ceramics via multiple engineering processes. J. Alloys Compd. 896, 163139 (2022).

    [28] G. Liu, J. Dong, L. Zhang, Y. Yan, R. Jing et al., Phase evolution in (1–x)(Na0.5Bi0.5)TiO3−xSrTiO3 solid solutions: a study focusing on dielectric and ferroelectric characteristics. J. Materiomics 6, 677–691 (2020).

    [29] S. Wu, B. Fu, J. Zhang, H. Du, Q. Zong et al., Superb energy storage capability for NaNbO3-based ceramics featuring labyrinthine submicro-domains with clustered lattice distortions. Small 19, e2303915 (2023).

    [30] H. Wang, S. Wu, B. Fu, J. Zhang, H. Du et al., Hierarchically polar structures induced superb energy storage properties for relaxor Bi0.5Na0.5TiO3-based ceramics. Chem. Eng. J. 471, 144446 (2023).

    [31] T. Karthik, S. Asthana, Enhanced mechanical and ferroelectric properties through grain size refinement in site specific substituted lead free Na0.5–xK x Bi0.5 TiO3 (x = 0–0.10) ceramics. Mater. Lett. 190, 273–275 (2017).

    [32] R. Jing, L. Zhang, Q. Hu, D.O. Alikin, V.Y. Shur et al., Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1–x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions. J. Materiomics 8, 335–346 (2022).

    [33] C. Wang, X. Yang, Z. Wang, C. He, X. Long, Investigation of switching behavior of acceptor-doped ferroelectric ceramics. Acta Mater. 170, 100–108 (2019).

    [34] T. Kainz, M. Naderer, D. Schütz, O. Fruhwirth, F.A. Mautner et al., Solid state synthesis and sintering of solid solutions of BNT–xBKT. J. Eur. Ceram. Soc. 34, 3685–3697 (2014).

    [35] Y. Liu, Y. Li, Z. Zheng, W. Kang, K. Xi et al., Dielectric temperature stability of Nb-modified Bi0.5(Na0.78K0.22)0.5TiO3 lead-free ceramics. Ceram. Int. 47, 4933–4936 (2021).

    [36] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976).

    [37] T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98, 559–566 (2015).

    [38] C. Sun, X. Chen, J. Shi, F. Pang, X. Dong et al., Simultaneously with large energy density and high efficiency achieved in NaNbO3-based relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 41, 1891–1903 (2021).

    [39] L. Jin, W. Luo, L. Wang, Y. Tian, Q. Hu et al., High thermal stability of electric field-induced strain in (1–x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 lead-free ferroelectrics. J. Eur. Ceram. Soc. 39, 277–286 (2019).

    [40] W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe et al., On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. J. Appl. Phys. 110, 074106 (2011).

    [41] Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Appl. Phys. Lett. 92, 262904 (2008).

    [42] H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang et al., Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics. J. Eur. Ceram. Soc. 35, 2501–2512 (2015).

    [43] J. Zang, W. Jo, H. Zhang, J. Rödel, Bi1/2Na1/2TiO3–BaTiO3 based thick-film capacitors for high-temperature applications. J. Eur. Ceram. Soc. 34, 37–43 (2014).

    [44] G. Viola, H. Ning, X. Wei, M. Deluca, A. Adomkevicius et al., Dielectric relaxation, lattice dynamics and polarization mechanisms in Bi0.5Na0.5TiO3-based lead-free ceramics. J. Appl. Phys. 114, 014107 (2013).

    [45] A.A. Bokov, Z.-G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006).

    [46] V.V. Shvartsman, D.C. Lupascu, Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012).

    [47] T. Wang, J. Hu, H. Yang, L. Jin, X. Wei et al., Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 06.5BiFeO3–0.35BaTiO3 ceramics. J. Appl. Phys. 121, 084103 (2017).

    [48] L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987).

    [49] H. Pan, S. Lan, S. Xu, Q. Zhang, H. Yao et al., Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 374, 100–104 (2021).

    [50] H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang et al., Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578–582 (2019).

    [51] C. Zhu, Z. Cai, B. Luo, L. Guo, L. Li et al., High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J. Mater. Chem. A 8, 683–692 (2020).

    [52] L. Zhang, R. Jing, Y. Huang, Q. Hu, D.O. Alikin et al., Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics. J. Eur. Ceram. Soc. 42, 944–953 (2022).

    [53] W. Wang, L. Zhang, W. Shi, Y. Yang, D. Alikin et al., Enhanced energy storage properties in lead-free (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectric ceramics through a cooperative optimization strategy. ACS Appl. Mater. Interfaces 15, 6990–7001 (2023).

    [54] W. Wang, L. Zhang, Y. Yang, W. Shi, Y. Huang et al., Enhancing energy storage performance in Na0.5Bi0.5TiO3-based lead-free relaxor ferroelectric ceramics along a stepwise optimization route. J. Mater. Chem. A 11, 2641–2651 (2023).

    [55] W. Jo, T. Granzow, E. Aulbach, J. Rödel, D. Damjanovic, Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. J. Appl. Phys. 105, 094102 (2009).

    [56] G. Viola, Y. Tian, C. Yu, Y. Tan, V. Koval et al., Electric field-induced transformations in bismuth sodium titanate-based materials. Prog. Mater. Sci. 122, 100837 (2021).

    [57] W. Shi, L. Zhang, R. Jing, Q. Hu, X. Zeng et al., Relaxor antiferroelectric-like characteristic boosting enhanced energy storage performance in eco-friendly (Bi0.5Na0.5)TiO3-based ceramics. J. Eur. Ceram. Soc. 42, 4528–4538 (2022).

    [58] N. Luo, K. Han, M.J. Cabral, X. Liao, S. Zhang et al., Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat. Commun. 11, 4824 (2020).

    [59] A. Xie, R. Zuo, Z. Qiao, Z. Fu, T. Hu et al., NaNbO3-(Bi0.5Li0.5)TiO3 lead-free relaxor ferroelectric capacitors with superior energy-storage performances via multiple synergistic design. Adv. Energy Mater. 11, 2101378 (2021).

    [60] J. Jiang, X. Meng, L. Li, S. Guo, M. Huang et al., Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering. Energy Storage Mater. 43, 383–390 (2021).

    [61] Q. Hu, X. Wei, Abnormal phase transition and polarization mismatch phenomena in BaTiO3-based relaxor ferroelectrics. J. Adv. Dielect. 9, 1930002 (2019).

    [62] F. Yan, K. Huang, T. Jiang, X. Zhou, Y. Shi et al., Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater. 30, 392–400 (2020).

    [63] X. Zhao, W. Bai, Y. Ding, L. Wang, S. Wu et al., Tailoring high energy density with superior stability under low electric field in novel (Bi0.5Na0.5)TiO3-based relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 40, 4475–4486 (2020).

    [64] D. Li, Y. Lin, Q. Yuan, M. Zhang, L. Ma et al., A novel lead-free Na0.5Bi0.5TiO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications. J. Materiomics 6, 743–750 (2020).

    [65] H. Qi, R. Zuo, Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3–NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A 7, 3971–3978 (2019).

    [66] H. Yang, F. Yan, Y. Lin, T. Wang, Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustain. Chem. Eng. 5, 10215–10222 (2017).

    [67] Y. Huang, L. Zhang, R. Jing, Q. Hu, D.O. Alikin et al., Thermal stability of dielectric and energy storage performances of Ca-substituted BNTZ ferroelectric ceramics. Ceram. Int. 47, 6298–6309 (2021).

    [68] G. Liu, J. Dong, L. Zhang, L. Yu, F. Wei et al., Na0.25Sr0.5Bi0.25TiO3 relaxor ferroelectric ceramic with greatly enhanced electric storage property by a B-site ion doping. Ceram. Int. 46, 11680–11688 (2020).

    [69] R. Kang, Z. Wang, X. Lou, W. Liu, P. Shi et al., Energy storage performance of Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics with superior temperature stability under low electric fields. Chem. Eng. J. 410, 128376 (2021).

    [70] G. Liu, L. Hu, Y. Wang, Z. Wang, L. Yu et al., Investigation of electrical and electric energy storage properties of La-doped Na0.3 Sr0.4Bi0.3TiO3 based Pb-free ceramics. Ceram. Int. 46, 19375–19384 (2020).

    [71] L. Yu, J. Dong, M. Tang, Y. Liu, F. Wu et al., Enhanced electrical energy storage performance of Pb-free A-site La3+-doped 0.85Na0.5Bi0.5TiO3–0.15CaTiO3 ceramics. Ceram. Int. 46, 28173–28182 (2020).

    [72] X. Zhang, D. Hu, Z. Pan, X. Lv, Z. He et al., Enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem. Eng. J. 406, 126818 (2021).

    [73] X. Qiao, F. Zhang, D. Wu, B. Chen, X. Zhao et al., Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J. 388, 124158 (2020).

    [74] F. Yan, X. Zhou, X. He, H. Bai, S. Wu et al., Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy. Nano Energy 75, 105012 (2020).

    [75] D. Hu, Z. Pan, X. Zhang, H. Ye, Z. He et al., Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT–BKT-based ceramics. J. Mater. Chem. C 8, 591–601 (2020).

    [76] L. Yang, X. Kong, Z. Cheng, S. Zhang, Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J. Mater. Chem. A 7, 8573–8580 (2019).

    [77] T. Li, P. Chen, F. Li, C. Wang, Energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3. Chem. Eng. J. 406, 127151 (2021).

    [78] Z. Jiang, H. Yang, L. Cao, Z. Yang, Y. Yuan et al., Enhanced breakdown strength and energy storage density of lead-free Bi05Na05TiO3-based ceramic by reducing the oxygen vacancy concentration. Chem. Eng. J. 414, 128921 (2021).

    [79] Z. Yang, H. Du, L. Jin, Q. Hu, H. Wang et al., Realizing high comprehensive energy storage performance in lead-free bulk ceramics via designing an unmatched temperature range. J. Mater. Chem. A 7, 27256–27266 (2019).

    [80] G. Zhang, P. Liu, B. Fan, H. Liu, Y. Zeng et al., Large energy density in Ba doped Pb0.97La0.02(Zr0.65Sn0.3Ti0.05)O3 antiferroelectric ceramics with improved temperature stability. IEEE Trans. Dielectr. Electr. Insul. 24, 744–748 (2017).

    [81] L. Jin, W. Luo, L. Hou, Y. Tian, Q. Hu et al., High electric field-induced strain with ultra-low hysteresis and giant electrostrictive coefficient in Barium strontium titanate lead-free ferroelectrics. J. Eur. Ceram. Soc. 39, 295–304 (2019).

    [82] H. Ye, F. Yang, Z. Pan, D. Hu, X. Lv et al., Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications. Acta Mater. 203, 116484 (2021).

    [83] A.K. Yadav, H. Fan, B. Yan, C. Wang, J. Ma et al., Enhanced storage energy density and fatigue free properties for 0.94Bi0.50(Na0.78K0.22)0.50Ti1−x(Al0.50Nb0.50)xO3–0.06BaZrO3 ceramics. Ceram. Int. 46, 17044–17052 (2020).

    [84] A. Xie, H. Qi, R. Zuo, Achieving remarkable amplification of energy-storage density in two-step sintered NaNbO3–SrTiO3 antiferroelectric capacitors through dual adjustment of local heterogeneity and grain scale. ACS Appl. Mater. Interfaces 12, 19467–19475 (2020).

    Wenjing Shi, Leiyang Zhang, Ruiyi Jing, Yunyao Huang, Fukang Chen, Vladimir Shur, Xiaoyong Wei, Gang Liu, Hongliang Du, Li Jin. Moderate Fields, Maximum Potential: Achieving High Records with Temperature-Stable Energy Storage in Lead-Free BNT-Based Ceramics[J]. Nano-Micro Letters, 2024, 16(1): 091
    Download Citation