• Laser & Optoelectronics Progress
  • Vol. 60, Issue 11, 1106001 (2023)
Yong Liu, Haobin Lin, Shaochun Zhang, Yang Dong..., Xiangdong Chen and Fangwen Sun*|Show fewer author(s)
Author Affiliations
  • CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, Anhui, China
  • show less
    DOI: 10.3788/LOP230704 Cite this Article Set citation alerts
    Yong Liu, Haobin Lin, Shaochun Zhang, Yang Dong, Xiangdong Chen, Fangwen Sun. Optical Fiber Quantum Sensing Based on Diamond Nitrogen-Vacancy Center[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106001 Copy Citation Text show less
    References

    [1] Kominis I K, Kornack T W, Allred J C et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 422, 596-599(2003).

    [2] Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 97, 151110(2010).

    [3] Simmonds M, Fertig W, Giffard R. Performance of a resonant input SQUID amplifier system[J]. IEEE Transactions on Magnetics, 15, 478-481(1979).

    [4] Baumgart I, Cai J M, Retzker A et al. Ultrasensitive magnetometer using a single atom[J]. Physical Review Letters, 116, 240801(2016).

    [5] Xie Y J, Yu H Y, Zhu Y B et al. A hybrid magnetometer towards femtotesla sensitivity under ambient conditions[J]. Science Bulletin, 66, 127-132(2021).

    [6] Wrachtrup J, von Borczyskowski C, Bernard J et al. Optical detection of magnetic resonance in a single molecule[J]. Nature, 363, 244-245(1993).

    [7] Taylor J M, Cappellaro P, Childress L et al. High-sensitivity diamond magnetometer with nanoscale resolution[J]. Nature Physics, 4, 810-816(2008).

    [8] Jelezko F, Gaebel T, Popa I et al. Observation of coherent oscillations in a single electron spin[J]. Physical Review Letters, 92, 076401(2004).

    [9] Gaebel T, Domhan M, Popa I et al. Room-temperature coherent coupling of single spins in diamond[J]. Nature Physics, 2, 408-413(2006).

    [10] Dong Y, Du B, Zhang S C et al. Solid quantum sensor based on nitrogen-vacancy center in diamond[J]. Acta Physica Sinica, 67, 160301(2018).

    [11] Maze J R, Stanwix P L, Hodges J S et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature, 455, 644-647(2008).

    [12] Chen X D, Dong C H, Sun F W et al. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond[J]. Applied Physics Letters, 99, 161903(2011).

    [13] Dolde F, Fedder H, Doherty M W et al. Electric-field sensing using single diamond spins[J]. Nature Physics, 7, 459-463(2011).

    [14] Ovartchaiyapong P, Lee K W, Myers B A et al. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator[J]. Nature Communications, 5, 1-6(2014).

    [15] Zhang S C. Research on optical fiber quantum sensing measurement method based on diamond nitrogen-vacancy color center[D](2021).

    [16] Arai K, Belthangady C, Zhang H et al. Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond[J]. Nature Nanotechnology, 10, 859-864(2015).

    [17] Albrecht R C, Bommer A, Deutsch C et al. Couping of a single nitrogen-vacancy center in diamond to a fiber-based microcavity[J]. Physical Review Letters, 110, 243602(2013).

    [18] Vorobyov V V, Soshenko V V, Bolshedvorskii S V et al. Coupling of single NV center to the tapered optical fiber[J]. Proceedings of SPIE, 9920, 992012(2016).

    [19] Zhang N, Guo Q, Ye W et al. Temperature Fluctuations Compensation with Multi-Frequency Synchronous Manipulation for a NV Magnetometer in Fiber-Optic Scheme[J]. Sensors, 22, 5218.

    [20] Shai M, Christopher F, Dirk E et al. Distributed quantum fiber magnetometry[J]. Laser & Photonics Reviews, 13, 1900075(2019).

    [21] Wolf T, Neumann P, Nakamura K et al. Subpicotesla diamond magnetometry[J]. Physical Review X, 5, 041001(2015).

    [22] Dix S, Gutsche J, Waller E et al. Fiber-tip endoscope for optical and microwave control[J]. The Review of scientific instruments, 93(2022).

    [23] Chen G B, Yang H, Sun J C et al. Rapid measurement and control of nitrogen-vacancy center-axial orientation in diamond particles[J]. Chinese Physics Letters, 37, 49-52(2020).

    [24] Israelsen N M, Kumar S, Tawfieq M et al. Increasing the photon collection rate from a single NV center with a silver mirror[J]. Journal of Optics, 16, 241-254(2014).

    [25] Li S, Bai D B, Capelli M et al. Preferential coupling of diamond NV centres in step-index fibres[J]. Optics Express, 29, 14425-14437(2021).

    [26] Fujiwara M, Zhao H Q, Noda T et al. Ultrathin fiber-taper coupling with nitrogen vacancy centers in nanodiamonds at cryogenic temperatures[J]. Optics Letters, 40, 5702-5705(2015).

    [27] Fujiwara M, Neitzke O, Schröder T et al. Fiber-coupled diamond micro-waveguides toward an efficient quantum interface for spin defect centers[J]. ACS Omega, 2, 7194-7202(2017).

    [28] Webb J L, Clement J D, Troise L et al. Nanotesla sensitivity magnetic field sensing using a compact diamond nitrogen-vacancy magnetometer[J]. Applied Physics Letters, 114, 231103(2019).

    [29] Mayer L, Debuisschert T. Direct optical interfacing of CVD diamond for deported sensing experiments involving nitrogen-vacancy centres[J]. Physica Status Solidi (a), 213, 2608-2613(2016).

    [30] Georgios C, Shaji R J, Zheng H J et al. Fiberized diamond-based vector magnetometers[J]. Frontiers in Photonics, 4(2021).

    [31] Duan D W, Kavatamane V K, Arumugam S R et al. Laser-induced heating in a high-density ensemble of nitrogen-vacancy centers in diamond and its effects on quantum sensing[J]. Optics Letters, 44, 2851-2854(2019).

    [32] Wunderlich R, Staacke R, Knolle W et al. Magnetic field and angle-dependent photoluminescence of a fiber-coupled nitrogen vacancy rich diamond[J]. Journal of Applied Physics, 130, 124901(2021).

    [33] Kubota K, Hatano Y, Kainuma Y et al. Wide temperature operation of diamond quantum sensor for electric vehicle battery monitoring[J]. Diamond and Related Materials, 135, 109853(2023).

    [34] Chen Y F, Lin Q Y, Cheng H D et al. Nanodiamond-based optical-fiber quantum probe for magnetic field and biological sensing[J]. ACS Sensors, 7, 3660-3670(2022).

    [35] Fujiwara M, Sun S, Dohms A et al. Real-time nanodiamond thermometry probing in vivo thermogenic responses[J]. Science advances, 6, eaba9636(2020).

    [36] Lanin A A, Fedotov I V, Ermakova Y G et al. Fiber-optic electron-spin-resonance thermometry of single laser-activated neurons[J]. Optics Letters, 41, 5563-5566(2016).

    [37] Kuwahata A, Kitaizumi T, Saichi K et al. Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications[J]. Scientific Reports, 10, 1-9(2020).

    [38] Liu X D, Cui J M, Sun F W et al. Fiber-integrated diamond-based magnetometer[J]. Applied Physics Letters, 103, 143105(2013).

    [39] Stürner F M, Brenneis A, Buck T et al. Integrated and portable magnetometer based on nitrogen-vacancy ensembles in diamond[J]. Advanced Quantum Technologies, 4, 2000111(2021).

    [40] Masuyama Y, Suzuki K, Hekizono A et al. Gradiometer using separated diamond quantum magnetometers[J]. Sensors, 21, 977(2021).

    [41] Zhang S C, Lin H B, Dong Y et al. High-sensitivity and wide-bandwidth fiber-coupled diamond magnetometer with surface coating[J]. Photonics Research, 10, 2191-2201(2022).

    [42] Gao Y, Xu C Q, Huang K et al. The circuit diagnosis method with diamond NV center ensemble magnetometer based on fiber coupling[J]. Spacecraft Environment Engineering, 39, 100-104(2022).

    [43] Zhou L Q, Patel R L, Frangeskou A C et al. Imaging damage in steel using a diamond magnetometer[J]. Physical Review Applied, 15, 024015(2021).

    [44] Zhao L, Wang X, Luo D C et al. Non-destructive detection of cracks based on diamond nitrogen-vacancy color center[J]. Journal of Electronic Measurement and Instrumentation, 36, 239-246(2022).

    [45] Doherty M W, Manson N B, Delaney P et al. The nitrogen-vacancy colour centre in diamond[J]. Physics Reports, 528, 1-45(2013).

    [46] Doherty M W, Dolde F, Fedder H et al. Theory of the ground-state spin of the NV-center in diamond[J]. Physical Review B, 85, 205203(2012).

    [47] Scholten S C, Healey A J, Robertson I O et al. Widefield quantum microscopy with nitrogen-vacancy centers in diamond: strengths, limitations, and prospects[J]. Journal of Applied Physics, 130, 150902(2021).

    [48] Fuchs G D, Dobrovitski V V, Hanson R et al. Excited-state spectroscopy using single spin manipulation in diamond[J]. Physical Review Letters, 101, 117601(2008).

    [49] Dréau A, Lesik M, Rondin L et al. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity[J]. Physical Review B, 84, 195204(2011).

    [50] Acosta V M, Bauch E, Ledbetter M P et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications[J]. Physical Review B, 80, 115202(2009).

    [51] Jensen K, Acosta V M, Jarmola A et al. Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond[J]. Physical Review B, 87, 014115(2013).

    [52] Pezzagna S, Naydenov B, Jelezko F et al. Creation efficiency of nitrogen-vacancy centres in diamond[J]. New Journal of Physics, 12, 065017(2010).

    [53] Li C C, Gong M, Chen X D et al. Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation[J]. Diamond and Related Materials, 74, 119-124(2017).

    [54] Lin H B, Zhang S C, Dong Y et al. Temperature sensing with nitrogen vacancy center in diamond[J]. Acta Physica Sinica, 71, 060302(2022).

    [55] Wang M, Dai S X, Zhang P Q et al. Research progress on evanescent wave sensor based on mid-infrared optical fiber[J]. Journal of the Chinese Ceramic Society, 50, 1117-1131(2022).

    [56] Raichlin Y, Katzir A. Fiber-optic evanescent wave spectroscopy in the middle infrared[J]. Applied Spectroscopy, 62, 55A-72A(2008).

    [57] Fedotov I V, Doronina-Amitonova L V, Voronin A A et al. Electron spin manipulation and readout through an optical fiber[J]. Scientific Reports, 4, 5362(2014).

    [58] Ishikawa L, Shikama T, Kakuno T et al. All-optical thermometry using a single multimode fiber endoscope and diamond nanoparticles containing nitrogen vacancy centers[J]. The Review of Scientific Instruments, 93, 083705(2022).

    [59] Duan D W, Kavatamane V K, Arumugam S R et al. Tapered ultra-high numerical aperture optical fiber tip for nitrogen vacancy ensembles based endoscope in a fluidic environment[J]. Applied Physics Letters, 116, 113701(2020).

    [60] Liebermeister L, Petersen F, Münchow A V et al. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center[J]. Applied Physics Letters, 104, 031101(2014).

    [61] Ampem-Lassen E, Simpson D A, Gibson B C et al. Nano-manipulation of diamond-based single photon sources[J]. Optics Express, 17, 11287-11293(2009).

    [62] Fedotov I V, Safronov N A, Shandarov Y A et al. Guided-wave-coupled nitrogen vacancies in nanodiamond-doped photonic-crystal fibers[J]. Applied Physics Letters, 101, 031106(2012).

    [63] Schröder T, Schell A W, Kewes G et al. Fiber-integrated diamond-based single photon source[J]. Nano Letters, 11, 198-202(2011).

    [64] Duan D, Du G X, Kavatamane V K et al. Efficient nitrogen-vacancy centers' fluorescence excitation and collection from micrometer-sized diamond by a tapered optical fiber in endoscope-type configuration[J]. Optics Express, 27, 6734-6745(2019).

    [65] Bian C, Li M X, Cao W et al. Robust integration of nitrogen-vacancy centers in nanodiamonds to optical fiber and its application in all-optical thermometry[J]. Chinese Optics Letters, 19, 120601(2021).

    [66] Fedotov I V, Blakley S M, Serebryannikov E E et al. High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber[J]. Optics Letters, 41, 472-475(2016).

    [67] Fedotov I V, Safronov N A, Shandarov Y A et al. Photonic-crystal-fiber-coupled photoluminescence interrogation of nitrogen vacancies in diamond nanoparticles[J]. Laser Physics Letters, 9, 151-154(2012).

    [68] Bai D, Huynh M H, Simpson D A et al. Fluorescent diamond microparticle doped glass fiber for magnetic field sensing[J]. APL Materials, 8, 081102(2020).

    [69] Mitchell A, Rubinsztein-Dunlop H. AOS Australian Conference on Optical Fibre Technology (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS) 2019[J]. Proceedings of SPIE, 11200, 1120001(2019).

    [70] Filipkowski A, Mrózek M, Stępniewski G et al. Volumetric incorporation of NV diamond emitters in nanostructured F2 glass magneto-optical fiber probes[J]. Carbon, 196, 10-19(2022).

    [71] Filipkowski A, Mrózek M, Stępniewski G et al. Magnetically sensitive fiber probe with nitrogen-vacancy center nanodiamonds integrated in a suspended core[J]. Optics Express, 30, 19573-19581(2022).

    [72] Gibson B C, Henderson M R, Ebendorff-Heidepriem H et al. Single photon emission from nanodiamond in tellurite glass[C], 721-722(2011).

    [73] Henderson M R, Gibson B C, Ebendorff-Heidepriem H et al. Diamond in tellurite glass: a new medium for quantum information[J]. Advanced Materials, 23, 2806-2810(2011).

    [74] Ebendorff-Heidepriem H, Ruan Y L, Ji H et al. Nanodiamond in tellurite glass part I: origin of loss in nanodiamond-doped glass[J]. Optical Materials Express, 4, 2608-2620(2014).

    [75] Ruan Y L, Ji H, Johnson B C et al. Nanodiamond in tellurite glass part II: practical nanodiamond-doped fibers[J]. Optical Materials Express, 5, 73-87(2015).

    [76] Ruan Y L, Gibson B C, Lau D W M et al. Atom-photon coupling from nitrogen-vacancy centres embedded in tellurite microspheres[J]. Scientific Reports, 5, 1-7(2015).

    [77] Ruan Y L, Simpson D A, Jeske J et al. Magnetically sensitive nanodiamond-doped tellurite glass fibers[J]. Scientific Reports, 8, 1-6(2018).

    [78] Orzechowska Z, Mrózek M, Filipkowski A et al. Tellurite glass rods with submicron-size diamonds as photonic magnetic field and temperature sensors[J]. Advanced Quantum Technologies, 5, 2100128(2022).

    [79] Fu K M C, Santori C, Spillane S et al. Quantum information processing with diamond nitrogen-vacancy centers coupled to microcavities[J]. Proceedings of SPIE, 6903, 69030M(2008).

    [80] Barclay P E, Santori C, Fu K M et al. Coherent interference effects in a nano-assembled diamond NV center cavity-QED system[J]. Optics Express, 17, 8081-8097(2009).

    [81] Gregor M, Henze R, Schröder T et al. On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator[J]. Applied Physics Letters, 95, 153110(2009).

    [82] Fu K M C, Barclay P E, Santori C et al. Low-temperature tapered-fiber probing of diamond NV ensembles coupled to GaP microcavities[J]. New Journal of Physics, 13, 055023(2011).

    [83] Tashima T, Takashima H, Takeuchi S. Direct optical excitation of an NV center via a nanofiber Bragg-cavity: a theoretical simulation[J]. Optics Express, 27, 27009-27016(2019).

    [84] Sarath R N, Rogers Lachlan J, Xavier V et al. Amplification by stimulated emission of nitrogen-vacancy centres in a diamond-loaded fibre cavity[J]. Nanophotonics, 9, 4505-4518(2020).

    [85] Ruf M, Weaver M J, van Dam S B et al. Resonant excitation and Purcell enhancement of coherent nitrogen-vacancy centers coupled to a Fabry-Perot microcavity[J]. Physical Review Applied, 15, 024049(2021).

    [86] Albrecht R, Bommer A, Pauly C et al. Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity[J]. Applied Physics Letters, 105, 073113(2014).

    [87] Fedotov I V, Doronina-Amitonova L V, Sidorov-Biryukov D A et al. Fiber-optic magnetic-field imaging[J]. Optics Letters, 39, 6954-6957(2014).

    [88] Fedotov I V, Doronina-Amitonova L V, Sidorov-Biryukov D A et al. Fiber-optic magnetometry with randomly oriented spins[J]. Optics Letters, 39, 6755-6758(2014).

    [89] Blakley S M, Fedotov I V, Amitonova L V et al. Fiber-optic vectorial magnetic-field gradiometry by a spatiotemporal differential optical detection of magnetic resonance in nitrogen-vacancy centers in diamond[J]. Optics Letters, 41, 2057-2060(2016).

    [90] Wojciechowski A M, Mrózek P N M, Sycz K et al. Optical magnetometry based on nanodiamonds with nitrogen-vacancy color centers[J]. Materials, 12, 2951(2019).

    [91] Hatano Y, Shin J, Nishitani D et al. Simultaneous thermometry and magnetometry using a fiber-coupled quantum diamond sensor[J]. Applied Physics Letters, 118, 034001(2021).

    [92] Xie F, Hu Y Q, Li L Y et al. A microfabricated fiber-integrated diamond magnetometer with ensemble nitrogen-vacancy centers[J]. Applied Physics Letters, 120, 191104(2022).

    [93] Patel R L, Zhou L Q, Frangeskou A C et al. Sub-nanotesla magnetometry with a fibre-coupled diamond sensor[J]. Physical Review Applied, 14, 044058(2020).

    [94] Dmitriev A K, Vershovskii A K. Concept of a microscale vector magnetic field sensor based on nitrogen-vacancy centers in diamond[J]. Journal of the Optical Society of America B, 33, B1-B4(2016).

    [95] Zheng D D, Ma Z M, Guo W J et al. A hand-held magnetometer based on an ensemble of nitrogen-vacancy centers in diamond[J]. Journal of Physics D: Applied Physics, 53, 155004(2020).

    [96] Fedotov I V, Blakley S, Serebryannikov E E et al. Fiber-based thermometry using optically detected magnetic resonance[J]. Applied Physics Letters, 105, 261109(2014).

    [97] Lin H B, Feng C, Dong Y et al. Simultaneous temperature and magnetic field measurements using time-division multiplexing[J]. Chinese Optics Letters, 21, 011201(2023).

    [98] Khalid A, Bai D B, Abraham A N et al. Electrospun nanodiamond-silk fibroin membranes: a multifunctional platform for biosensing and wound-healing applications[J]. ACS Applied Materials & Interfaces, 12, 48408-48419(2020).

    [99] Zhang S C, Li S, Du B et al. Thermal-demagnetization-enhanced hybrid fiber-based thermometer coupled with nitrogen-vacancy centers[J]. Optical Materials Express, 9, 4634-4643(2019).

    [100] Zhang S C, Dong Y, Du B et al. A robust fiber-based quantum thermometer coupled with nitrogen-vacancy centers[J]. The Review of Scientific Instruments, 92, 044904(2021).

    [101] Lin H B, Feng C, Li L et al. Insulator-metal transition characterized by multifunctional diamond quantum sensor[J]. Applied Physics Letters, 122, 104003(2023).

    [102] Chen G B, Gu B X, He W H et al. Vectorial near-field characterization of microwave device by using micro diamond based on tapered fiber[J]. IEEE Journal of Quantum Electronics, 56, 7500106(2020).

    [103] Gu B X, Chen G B, Wang H et al. A fiber based diamond near-field probe and characterization of a chip[J]. Journal of Terahertz Science and Electronic Information Technology, 19, 901-904, 928(2021).

    [104] Bai R X, Yang F, Liu P et al. Optimized microwave sensing in broad frequency range by a fiber diamond probe[J]. Applied Physics Letters, 120, 044003(2022).

    [105] Israelsen N M, Radko I P, Raatz N et al. Nitrogen-vacancy defect emission spectra in the vicinity of an adjustable silver mirror[J]. Materials for Quantum Technology, 1, 015002(2021).

    [106] Duan D W, Kavatamane V K, Arumugam S R et al. Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror[J]. Applied Physics Letters, 113, 041107(2018).

    [107] Ma Z M, Zhang S W, Fu Y P et al. Magnetometry for precision measurement using frequency-modulation microwave combined efficient photon-collection technique on an ensemble of nitrogen-vacancy centers in diamond[J]. Optics Express, 26, 382-390(2018).

    Yong Liu, Haobin Lin, Shaochun Zhang, Yang Dong, Xiangdong Chen, Fangwen Sun. Optical Fiber Quantum Sensing Based on Diamond Nitrogen-Vacancy Center[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106001
    Download Citation