• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2228002 (2022)
Jiaqi Yao1,2, Haoran Zhai2,3,*, Ren Liu2,4, Hong Zhu5..., Liuru Hu6 and Xinming Tang1,2,4|Show fewer author(s)
Author Affiliations
  • 1College of Geomrtics, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • 2Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of P.R.China, Beijing 100048, China
  • 3College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
  • 4School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, Jiangsu, China
  • 5College of Ecology and Environment, Institute of Disaster Prevention, Langfang 065201, Hebei, China
  • 6The First Topographic Surveying Brigade, Ministry of Natural Resources of P.R.China, Xi'an 710054, Shaanxi, China
  • show less
    DOI: 10.3788/LOP202259.2228002 Cite this Article Set citation alerts
    Jiaqi Yao, Haoran Zhai, Ren Liu, Hong Zhu, Liuru Hu, Xinming Tang. Analysis of Atmospheric Detection Algorithm by Photon-Counting Laser Altimeter Satellite[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2228002 Copy Citation Text show less
    Three working modes of CATS satellite
    Fig. 1. Three working modes of CATS satellite
    Distribution of laser points on ICESat-2 satellite[17]
    Fig. 2. Distribution of laser points on ICESat-2 satellite[17]
    Production flow chart of ATL04, ATL09
    Fig. 3. Production flow chart of ATL04, ATL09
    Atmospheric detection algorithm of CATS
    Fig. 4. Atmospheric detection algorithm of CATS
    Classification algorithm for cloud, aerosol in CATS data
    Fig. 5. Classification algorithm for cloud, aerosol in CATS data
    Flow chart of DDA algorithm
    Fig. 6. Flow chart of DDA algorithm
    Data distribution in experimental area
    Fig. 7. Data distribution in experimental area
    Error analysis of experimental data.
    Fig. 8. Error analysis of experimental data.
    ProjectValue
    Wavelength of laser 1 /nm5321064
    Repetition frequency of laser 1 /Hz5000
    Output energy of laser 1 /mJ~1
    Wavelength of laser 2 /nm3555321064
    Repetition frequency of laser 2 /Hz4000
    Output energy of laser 2 /mJ~2
    The time of starting work2015.01
    Aperture of telescope /cm60
    Inclined angle of laser emission /(°)0.5
    Receiving field of view /μrad110
    Orbit inclination /(°)51
    Orbit height /km405
    Atmospheric vertical resolution /m60
    Atmospheric horizontal resolution /m350
    Table 1. Parameters of CATS satellite
    ProjectValue
    Orbit height /km500
    Orbit inclination /(°)92
    Orbit typeNon-solar synchronization
    Orbital period /d91
    Time of starting work2018.09
    Wavelength /nm532
    Number of beams6
    Repetition frequency of laser /Hz10000
    Laser spot diameter /m~17
    Output energy of laser /mJ

    Strong beam:0.17

    Weak beam:0.04

    Distance between spots /km

    Along-track:0.09

    Cross-track(strong beam and Strong beam):3.3

    Cross-track(strong beam and weak beam):2.5

    Repetition period /d91
    Elevation measurement accuracy /m0.1
    Atmospheric vertical resolution /m30
    Atmospheric horizontal resolution /m280
    Table 2. Parameters of ICESat-2 satellite
    Layer typeCAD
    Cloud1-10
    Aerosol-10--1
    Uncertain data0
    Invalid data-999
    Table 3. Atmospheric hierarchical classification based on CAD index
    Jiaqi Yao, Haoran Zhai, Ren Liu, Hong Zhu, Liuru Hu, Xinming Tang. Analysis of Atmospheric Detection Algorithm by Photon-Counting Laser Altimeter Satellite[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2228002
    Download Citation