• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2228002 (2022)
Jiaqi Yao1,2, Haoran Zhai2,3,*, Ren Liu2,4, Hong Zhu5..., Liuru Hu6 and Xinming Tang1,2,4|Show fewer author(s)
Author Affiliations
  • 1College of Geomrtics, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • 2Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of P.R.China, Beijing 100048, China
  • 3College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
  • 4School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, Jiangsu, China
  • 5College of Ecology and Environment, Institute of Disaster Prevention, Langfang 065201, Hebei, China
  • 6The First Topographic Surveying Brigade, Ministry of Natural Resources of P.R.China, Xi'an 710054, Shaanxi, China
  • show less
    DOI: 10.3788/LOP202259.2228002 Cite this Article Set citation alerts
    Jiaqi Yao, Haoran Zhai, Ren Liu, Hong Zhu, Liuru Hu, Xinming Tang. Analysis of Atmospheric Detection Algorithm by Photon-Counting Laser Altimeter Satellite[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2228002 Copy Citation Text show less
    References

    [1] Li G Y, Tang X M, Zhang C Y et al. Multi-criteria constraint algorithm for selecting ICESat/GLAS data as elevation control points[J]. Journal of Remote Sensing, 21, 96-104(2017).

    [2] Tang X M, Li G Y. Development and Prospect of laser altimetry satellite[J]. Space International, 13-18(2017).

    [3] Zwally H J, Schutz B, Abdalati W et al. ICESat's laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics, 34, 405-445(2002).

    [4] Wang X W, Cheng X, Gong P et al. Earth science applications of ICESat/GLAS: a review[J]. International Journal of Remote Sensing, 32, 8837-8864(2011).

    [5] McGill M J, Yorks J E, Scott V S et al. The cloud-aerosol transport system (CATS): a technology demonstration on the international space station[J]. Proceedings of SPIE, 9612, 96120A(2015).

    [6] Yorks J E, McGill M J, Scott V S et al. The airborne cloud-aerosol transport system: overview and description of the instrument and retrieval algorithms[J]. Journal of Atmospheric and Oceanic Technology, 31, 2482-2497(2014).

    [7] Yu A W, Stephen M A, Li S X et al. Space laser transmitter development for ICESat-2 mission[J]. Proceedings of SPIE, 7578, 757809(2010).

    [8] Yang F, Wen J H. ICESat and ICESat-2 applications: progress and prospect[J]. Chinese Journal of Polar Research, 23, 138-148(2011).

    [9] Yu A W, Krainak M A, Harding D J et al. Development effort of the airborne lidar simulator for the lidar surface topography (LIST) mission[J]. Proceedings of SPIE, 8182, 818207(2011).

    [10] Li G Y, Tang X M, Chen J Y et al. Processing and preliminary accuracy validation of the GF-7 satellite laser altimetry data[J]. Acta Geodaetica et Cartographica Sinica, 50, 1338-1348(2021).

    [11] Tang X M, Yao J Q, Li G Y et al. Cloud scattering influence on satellite laser altimetry data and its correction[J]. Applied Optics, 59, 4064-4075(2020).

    [12] Yang Y K, Marshak A, Palm S P et al. Cloud impact on surface altimetry from a spaceborne 532-nm micropulse photon-counting lidar: system modeling for cloudy and clear atmospheres[J]. IEEE Transactions on Geoscience and Remote Sensing, 49, 4910-4919(2011).

    [13] Yang Y K, Marshak A, Palm S P et al. Assessment of cloud screening with apparent surface reflectance in support of the ICESat-2 mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 1037-1045(2012).

    [14] Abshire J B, Sun X L, Riris H et al. Geoscience laser altimeter system (GLAS) on the ICESat mission: pre-launch and on-orbit measurement performance[C], 1534-1536(2003).

    [15] Liu Z Y, Vaughan M, Winker D et al. The CALIPSO lidar cloud and aerosol discrimination: version 2 algorithm and initial assessment of performance[J]. Journal of Atmospheric and Oceanic Technology, 26, 1198-1213(2009).

    [16] Xie D P, Li G Y, Zhao Y M et al. U.S. GEDI space-based laser altimetry system and its application[J]. Space International, 39-44(2018).

    [17] Story S, Michelle H, Yi D. Algorithm Theoretical basis document for GEDI transmit and receive waveform processing for L1 and L2 products[EB/OL]. https://gedi.umd.edu/

    [18] Yao J Q, Tang X M, Li G Y et al. Cloud detection of laser altimetry satellite ICESat-2 and the related algorithm[J]. Laser & Optoelectronics Progress, 57, 131408(2020).

    [19] Mao F Y, Gong W, Li J et al. Cloud detection and parameter retrieval based on improved differential zero-crossing method for Mie lidar[J]. Acta Optica Sinica, 30, 3097-3102(2010).

    [20] Palm S P, Yang Y, Herzfeld U C et al. ATLAS/ICESat-2 L3A calibrated backscatter profiles and atmospheric layer characteristics,version1[EB/OL]. https://doi.org/10.5067/ATLAS/ATL09.001

    [21] Smirnov A, Holben B N, Eck T F et al. Cloud-screening and quality control algorithms for the AERONET database[J]. Remote Sensing of Environment, 73, 337-349(2000).

    [22] Li J H, Liu H F, Zhao D T. Inversion algorithm of aerosol optical depth based on MODIS data and its application[J]. Journal of Green Science and Technology, 108-111(2012).

    [23] Zhang W H, Li S, Ma Y et al. Improved method of atmospheric delay correction using China meteorological station data for a laser altimeter[J]. Infrared and Laser Engineering, 47, 0206004(2018).

    Jiaqi Yao, Haoran Zhai, Ren Liu, Hong Zhu, Liuru Hu, Xinming Tang. Analysis of Atmospheric Detection Algorithm by Photon-Counting Laser Altimeter Satellite[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2228002
    Download Citation