• PhotoniX
  • Vol. 4, Issue 1, 32 (2023)
Jiyong Wang1,*, Lei Zhang2,3, and Min Qiu2,3,**
Author Affiliations
  • 1Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
  • 2Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang Province, China
  • 3Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang Province, China
  • show less
    DOI: 10.1186/s43074-023-00106-3 Cite this Article
    Jiyong Wang, Lei Zhang, Min Qiu. Nonlinear plasmonics: second-harmonic generation and multiphoton photoluminescence[J]. PhotoniX, 2023, 4(1): 32 Copy Citation Text show less
    References

    [1] Boyd RW. Nonlinear optics. New York: Academic Press; 2008.

    [2] Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:493–4. .

    [3] Butet J, et al. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano. 2015;9:10545–62. .

    [4] Porto JA, et al. Optical bistability in subwavelength slit apertures containing nonlinear media. Phys Rev B. 2004;70:81402. .

    [5] Ricard D, et al. Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt Lett. 1985;10:511–3. .

    [6] Chen PY, Alu A. Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays. Nano Lett. 2011;11:5514–8. .

    [7] Slusher RE, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys Rev Lett. 1985;55:2409–12. .

    [8] Deng L, et al. Four-wave mixing with matter waves. Nature. 1999;398:218–20. .

    [9] Malkin VM, et al. Detuned raman amplification of short laser pulses in plasma. Phys Rev Lett. 2000;84:1208–11. .

    [10] Liang TK, Tsang HK. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl Phys Lett. 2004;84:2745–7. .

    [11] Cheng W, et al. Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses. Phys Rev Lett. 2005;94:045003. .

    [12] Chiao RY, et al. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys Rev Lett. 1964;12:592–5. .

    [13] Zhu Z, et al. Stored light in an optical fiber via stimulated Brillouin scattering. Science. 2007;318:1748–50. .

    [14] Farrer RA, et al. Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles. Nano Lett. 2005;5:1139–42. .

    [15] Wang J, et al. Direct comparison of second harmonic generation and two-photon photoluminescence from single connected gold nanodimers. J Phys Chem C. 2016;120:17699–710. .

    [16] Eberly JH, et al. Nonlinear light scattering accompanying multiphoton ionization. Phys Rev Lett. 1989;62:881–4. .

    [17] Corkum PB. Plasma perspective on strong field multiphoton ionization. Phys Rev Lett. 1993;71:1994–7. .

    [18] Popov VS. Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Phys Usp. 2004;47:855–85. .

    [19] Wang J, et al. Strong second-harmonic generation from Au-Al heterodimers. Nanoscale. 2019;11:23475–81. .

    [20] Agrawal GP. Nonlinear fiber optics. New York: Acedemic Press; 2010.

    [21] Friberg S, Smith P. Nonlinear optical glasses for ultrafast optical switches. IEEE J Quantum Electron. 1987;23:2089–94. .

    [22] Heebner JE, Boyd RW. Enhanced all-optical switching by use of a nonlinear fiber ring resonator. Opt Lett. 1999;24:847–9. .

    [23] Russell P. Photonic crystal fibers. Science. 2003;299:358–62. .

    [24] Krauss TF. Slow light in photonic crystal waveguides. J Phys D Appl Phys. 2007;40:2666–70. .

    [25] Dudley JM, Taylor JR. Supercontinuum generation in optical fibers. New York: Cambridge University Press; 2010.

    [26] Alfano RR, Shapiro SL. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys Rev Lett. 1970;24:592–4. .

    [27] Maier SA. Plasmonics: fundamentals and applications. New York: Springer; 2007.

    [28] de Aberasturi DJ, et al. Modern applications of plasmonic nanoparticles: from energy to health. Adv Opt Mat. 2015;3:602–17. .

    [29] Ding S-Y, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater. 2016;1:6. .

    [30] Li JF, et al. Plasmon-enhanced fluorescence spectroscopy. Chem Soc Rev. 2017;46:3962–79. .

    [31] Jaculbia RB, et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat Nanotechnol. 2020;15:105–10. .

    [32] Cong B, et al. Gold nanorods: near-infrared plasmonic photothermal conversion and surface coating. J Mat Sci Chem Engine. 2014;2:20–5. .

    [33] Furube A, Hashimoto S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication. NPG Asia Mat. 2017;9:e454–e454. .

    [34] Mallah AR, et al. Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: Fundamentals and applications. Solar Energy Mat Solar Cells. 2019;201:110084. .

    [35] Mooradian A. Photoluminescence of metals. Phys Rev Lett. 1969;22:185–7. .

    [36] Boyd GT, et al. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys Rev B: Condens Matter. 1986;33:7923–36. .

    [37] Wang J, et al. Carrier recombination and plasmonic emission channels in metallic photoluminescence. Nanoscale. 2018;10:8240–5. .

    [38] Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley; 1998.

    [39] Nehl CL, et al. Scattering spectra of single gold nanoshells. Nano Lett. 2004;4:2355–9. .

    [40] Wen F, et al. Charge transfer plasmons: optical frequency conductances and tunable infrared resonances. ACS Nano. 2015;9:6428–35. .

    [41] Cho EC, et al. Measuring the optical absorption cross-sections of Au-Ag nanocages and Au nanorods by photoacoustic imaging. J Phys Chem C. 2009;113:9023–8. .

    [42] Zhang N, et al. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat Photonics. 2016;10:473–82. .

    [43] Wackenhut F, et al. Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods. J Phys Chem C. 2013;117:17870–7. .

    [44] Bouhelier A, et al. Near-field second-harmonic generation induced by local field enhancement. Phys Rev Lett. 2003;90:013903. .

    [45] Dong Z, et al. Second-harmonic generation from sub-5 nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates. Nano Lett. 2015;15:5976–81. .

    [46] Wang Z, et al. Selectively plasmon-enhanced second-harmonic generation from monolayer tungsten diselenide on flexible substrates. ACS Nano. 2018;12:1859–67. .

    [47] Kruk SS, et al. Asymmetric parametric generation of images with nonlinear dielectric metasurfaces. Nat Photonics. 2022;16:561–5. .

    [48] Stockman MI, et al. Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations. Phys Rev Lett. 2004;92:057402. .

    [49] Bachelier G, et al. Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions. Phys Rev B. 2010;82:235403. .

    [50] Butet J, et al. Optical second harmonic generation of single metallic nanoparticlesembedded in a homogeneous medium. Nano Lett. 2010;10:1717–21. .

    [51] Zhang, et al. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett. 2011;11:5519–23. .

    [52] Butet J, et al. Surface second-harmonic generation from coupled spherical plasmonic nanoparticles: eigenmode analysis and symmetry properties. Phys Rev B. 2014;89:245449. .

    [53] Zhang T, et al. Coherent second harmonic generation enhanced by coherent plasmon-exciton coupling in plasmonic nanocavities. ACS Photonics. 2023;10:1529–37. .

    [54] Hentschel M, et al. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett. 2012;12:3778–82. .

    [55] Navarro-Cia M, Maier SA. Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano. 2012;6:3537–44. .

    [56] Hajisalem G, et al. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. Nano Lett. 2014;14:6651–4. .

    [57] Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett. 2007;98:026104. .

    [58] Biagioni P, et al. Dynamics of four-photon photoluminescence in gold nanoantennas. Nano Lett. 2012;12:2941–7. .

    [59] Xu J, et al. Multiphoton upconversion enhanced by deep subwavelength near-field confinement. Nano Lett. 2021;21:3044–51. .

    [60] Butet J, et al. Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation. Nano Lett. 2013;13:1787–92. .

    [61] Galanty M, et al. Second harmonic generation hotspot on a centrosymmetric smooth silver surface. Light Sci Appl. 2018;7:49. .

    [62] Berini P. Surface plasmon photodetectors and their applications. Laser Photonics Rev. 2014;8:197–220. .

    [63] Wang J, et al. Saturable plasmonic metasurfaces for laser mode locking. Light Sci Appl. 2020;9:50. .

    [64] Zhang L, et al. Plug-and-play’ plasmonic metafibers for ultrafast fibre lasers. Light Adv Manufact. 2022;3:45. .

    [65] Jin R, et al. Correlating second harmonic optical responses of single Ag nanoparticles with morphology. J Am Chem Soc. 2005;127:12482–3. .

    [66] Butet J, et al. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation. Opt Express. 2010;18:22314–23. .

    [67] Accanto N, et al. Phase control of femtosecond pulses on the nanoscale using second harmonic nanoparticles. Light Sci Appl. 2014;3:e143–e143. .

    [68] Accanto N, et al. Capturing the optical phase response of nanoantennas by coherent second-harmonic microscopy. Nano Lett. 2014;14:4078–82. .

    [69] Nuriya M, et al. Multimodal two-photon imaging using a second harmonic generation-specific dye. Nat Commun. 2016;7:11557. .

    [70] Zipfel WR, et al. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21:1369–77. .

    [71] Lakowicz JR, et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst. 2008;133:1308–46. .

    [72] Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photonics. 2012;6:737–48. .

    [73] Metzger B, et al. Ultrafast nonlinear plasmonic spectroscopy: from dipole nanoantennas to complex hybrid plasmonic structures. ACS Photonics. 2016;3:1336–50. .

    [74] Butet J, Martin OJ. Nonlinear plasmonic nanorulers. ACS Nano. 2014;8:4931–9. .

    [75] Yang ZJ, et al. Efficient second harmonic generation in gold-silicon core-shell nanostructures. Opt Express. 2018;26:5835–44. .

    [76] Ding SJ, et al. Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups. Nano Lett. 2019;19:2005–11. .

    [77] Hou J, et al. Self-induced transparency in a perfectly absorbing chiral second-harmonic generator. PhotoniX. 2022;3:22. .

    [78] Loudon R. The quantum theory of light. New York: Oxford University Press; 2000.

    [79] Shen YR. The principles of nonlinear optics. New York: Wiley; 1984.

    [80] Simon HJ, et al. Optical second-harmonic generation with surface plasmons in silver films. Phys Rev Lett. 1974;33:1531–4. .

    [81] Shan J, et al. Experimental study of optical second-harmonic scattering from spherical nanoparticles. Phys Rev A. 2006;73:023819. .

    [82] Dadap JI. Optical second-harmonic scattering from cylindrical particles. Phys Rev B. 2008;78:205322. .

    [83] Bloembergen N, et al. Optical second-harmonic generation in reflection from media with inversion symmetry. Phys Rev. 1968;174:813–22. .

    [84] O’Brien K, et al. Predicting nonlinear properties of metamaterials from the linear response. Nat Mater. 2015;14:379–83. .

    [85] Celebrano M, et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nature Nanotechnol. 2015;10:412–7. .

    [86] Linnenbank H, Linden S. Second harmonic generation spectroscopy on second harmonic resonant plasmonic metamaterials. Optica. 2015;2:698–701. .

    [87] Metzger B, et al. Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Opt Lett. 2012;37:4741–3. .

    [88] Demtroder W. Laser spectroscopy: basic concepts and instrumentation. New York: Springer; 2003.

    [89] Pu Y, et al. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett. 2010;104:207402. .

    [90] Chen S, et al. Strong nonlinear optical activity induced by lattice surface modes on plasmonic metasurface. Nano Lett. 2019;19:6278–83. .

    [91] Hooper DC, et al. Second harmonic spectroscopy of surface lattice resonances. Nano Lett. 2019;19:165–72. .

    [92] Shen B, et al. Nonlinear spectral-imaging study of second- and third-harmonic enhancements by surface-lattice resonances. Adv Opt Mat. 2020;8:1901981. .

    [93] Spackova B, Homola J. Sensing properties of lattice resonances of 2D metal nanoparticle arrays: an analytical model. Opt Express. 2013;21:27490–502. .

    [94] Smith EM, et al. Second harmonic generation enhancement of ITO-based ENZ materials and metasurfaces. MRS Adv. 2022;7:741–5. .

    [95] Argyropoulos C, et al. Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial. Phys Rev B. 2014;89:235401. .

    [96] Deng J, et al. Giant enhancement of second-order nonlinearity of epsilon-near- zero medium by a plasmonic metasurface. Nano Lett. 2020;20:5421–7. .

    [97] Metzger B, et al. Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength. Nano Lett. 2015;15:3917–22. .

    [98] Thyagarajan K, et al. Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt Express. 2012;20:12860–5. .

    [99] Ren ML, et al. Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale. Opt Express. 2014;22:28653–61. .

    [100] Guo K, Guo Z. Enhanced second-harmonic generation from Fano like resonance in an asymmetric homodimer of gold elliptical nanodisks. ACS Omega. 2019;4:1757–62. .

    [101] Chandrasekar R, et al. Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances. Opt Mat Expr. 2015;5:2682–91. .

    [102] Linden S, et al. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys Rev Lett. 2012;109:015502. .

    [103] Tsai WY, et al. Second Harmonic Light Manipulation with Vertical Split Ring Resonators. Adv Mat. 2019;31:1806479. .

    [104] Valev VK, et al. Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett. 2009;9:3945–8. .

    [105] Valev VK, et al. Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano. 2011;5:91–6. .

    [106] Husu H, et al. Metamaterials with tailored nonlinear optical response. Nano Lett. 2012;12:673–7. .

    [107] Canfield BK, et al. Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers. Nano Lett. 2007;7:1251–5. .

    [108] Xu T, et al. Second-harmonic emission from sub-wavelength apertures: effects of aperture symmetry and lattice arrangement. Opt Express. 2007;15:13894–906. .

    [109] Schon P, et al. Enhanced second-harmonic generation from individual metallic nanoapertures. Opt Lett. 2010;35:4063–5. .

    [110] Berthelot J, et al. Silencing and enhancement of second-harmonic generation in optical gap antennas. Opt Express. 2012;20:10498–508. .

    [111] Viarbitskaya S, et al. Delocalization of nonlinear optical responses in plasmonic nanoantennas. Phys Rev Lett. 2015;115:197401. .

    [112] Grosse NB, et al. Nonlinear plasmon-photon interaction resolved by k-space spectroscopy. Phys Rev Lett. 2012;108:136802. .

    [113] Li Y, et al. Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires. Nano Lett. 2017;17:7803–8. .

    [114] Imura K, et al. Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J Phys Chem B. 2005;109:13214–20. .

    [115] Rosei R, Lynch DW. Thermomodulation spectra of Al, Au, and Cu. Phys Rev B. 1972;5:3883–94. .

    [116] Rosei R, et al. d bands position and width in gold from very low temperature thermomodulation measurements. Surf Sci. 1973;37:689–99. .

    [117] Rosei R, et al. Temperature modulation of the optical transitions involving the Fermi surface in Ag: experimental. Phys Rev B. 1974;10:484–9. .

    [118] Guerrisi M, et al. Splitting of the interband absorption edge in Au. Phys Rev B. 1975;12:557–63. .

    [119] Hohlfeld J, et al. Electron and lattice dynamics following optical excitation of metals. Chem Phys. 2000;251:237–58. .

    [120] Hu H, et al. Plasmon-modulated photoluminescence of individual gold nanostructures. ACS Nano. 2012;6:10147–55. .

    [121] Jiang XF, et al. Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy. J Phys Chem Lett. 2013;4:1634–8. .

    [122] Horneber A, et al. Nonlinear optical imaging of single plasmonic nanoparticles with 30 nm resolution. Phys Chem Chem Phys. 2015;17:21288–93. .

    [123] Wang N, et al. Ultrafast laser melting of Au nanoparticles: atomistic simulations. J Nanopart Res. 2011;13:4491–509. .

    [124] Zeni C, et al. Data-driven simulation and characterisation of gold nanoparticle melting. Nat Commun. 2021;12:6056. .

    [125] Wang J, et al. Approach and coalescence of gold nanoparticles driven by surface thermodynamic fluctuations and atomic interaction forces. ACS Nano. 2016;10:2893–902. .

    [126] Anger P, et al. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett. 2006;96:113002. .

    [127] Viste P, et al. Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources. ACS Nano. 2010;4:759–64. .

    [128] Shahbazyan TV. Theory of plasmon-enhanced metal photoluminescence. Nano Lett. 2013;13:194–8. .

    [129] Shahbazyan TV, et al. Size-dependent surface plasmon dynamics in metal nanoparticles. Phys Rev Lett. 1998;81:3120–3. .

    [130] Dulkeith E, et al. Plasmon emission in photoexcited gold nanoparticles. Phys Rev B. 2004;70:205424. .

    [131] Fang Y, et al. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. ACS Nano. 2012;6:7177–84. .

    [132] Biagioni P, et al. Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration. Phys Rev B. 2009;80:045411.

    [133] Wang QQ, et al. Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region. Nano Lett. 2007;7:723–8. .

    [134] Ma Z, et al. Origin of the avalanche-like photoluminescence from metallic nanowires. Sci Rep. 2016;6:18857. .

    [135] Gong HM, et al. Strong near-infrared avalanche photoluminescence from Ag nanowire arrays. Plasmonics. 2008;3:59–64. .

    [136] Song M, et al. Polarization properties of surface plasmon enhanced photoluminescence from a single Ag nanowire. Opt Express. 2012;20:22290–7. .

    [137] Wang J, et al. Hot carrier-mediated avalanche multiphoton photoluminescence from coupled Au-Al nanoantennas. J Chem Phys. 2021;154:074701. .

    [138] Hellwarth R, Christensen P. Nonlinear optical microscopic examination of structure in polycrystalline ZnSe. Opt Commun. 1974;12:318–22. .

    [139] Pavone FS, Campagnola PJ. Second harmonic generation imaging. New York: CRC Press; 2016.

    [140] Carvalho BR, et al. Nonlinear dark-field imaging of one-dimensional defects in monolayer dichalcogenides. Nano Lett. 2020;20:284–91. .

    [141] Oka H. Highly-efficient entangled two-photon absorption with the assistance of plasmon nanoantenna. J Phys B: Atomic, Mol Opt Phys. 2015;48:115503. .

    [142] Smolyaninov A, et al. Plasmonic enhanced two-photon absorption in silicon photodetectors for optical correlators in the near-infrared. Opt Lett. 2016;41:4445–8. .

    [143] Kong L, et al. A novel flurophore-cyano-carboxylic-Ag microhybrid: Enhanced two photon absorption for two-photon photothermal therapy of HeLa cancer cells by targeting mitochondria. Biosens Bioelectron. 2018;108:14–9. .

    [144] Li JL, Gu M. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials. 2010;31:9492–8. .

    [145] Vickers ET, et al. Two-photon photoluminescence and photothermal properties of hollow gold nanospheres for efficient theranostic applications. J Phys Chem C. 2017;122:13304–13. .

    [146] Kang Z, et al. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers. Appl Phys Lett. 2013;103:4. .

    [147] Wang X-D, et al. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser. Appl Phys Lett. 2014;105:16. .

    [148] Shu Y, et al. Gold nanorods as saturable absorber for harmonic soliton molecules generation. Front Chem. 2019;7:715. .

    [149] Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater. 2010;9:205–13. .

    [150] Wang F, Melosh NA. Plasmonic energy collection through hot carrier extraction. Nano Lett. 2011;11:5426–30. .

    [151] Goykhman I, et al. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 2011;11:2219–24. .

    [152] Berini P, et al. Thin Au surface plasmon waveguide Schottky detectors on p-Si. Nanotechnology. 2012;23:444011. .

    [153] Knight MW, et al. Photodetection with active optical antennas. Science. 2011;332:702–4. .

    [154] Knight MW, et al. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 2013;13:1687–92. .

    [155] Huang X, et al. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater. 2009;21:4880–910. .

    [156] Yang X, et al. Gold Nanomaterials at work in biomedicine. Chem Rev. 2015;115:10410–88. .

    [157] Olesiak-Banska J, et al. Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. Chem Soc Rev. 2019;48:4087–117. .

    [158] Zheng J, et al. Gold Nanorods: The most versatile plasmonic nanoparticles. Chem Rev. 2021;121:13342–453. .

    [159] Durr NJ, et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007;7:941–5. .

    [160] Chen S, et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Phys Rev Lett. 2014;113:033901. .

    [161] Li G, et al. Continuous control of the nonlinearity phase for harmonic generations. Nat Mater. 2015;14:607–12. .

    [162] Li G, et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Lett. 2017;17:7974–9. .

    [163] Li Z, et al. Tripling the capacity of optical vortices by nonlinear metasurface. Laser Photonics Rev. 2018;12:1800164. .

    [164] Liu L, et al. Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials. Adv Sci. 2018;5:1800661. .

    [165] Forbes A, et al. Structured light. Nat Photonics. 2021;15:253–62. .

    [166] Liu L, et al. Plasmon-induced thermal tuning of few-exciton strong coupling in 2D atomic crystals. Optica. 2021;8:11. .

    [167] Sit A, et al. High-dimensional intracity quantum cryptography with structured photons. Optica. 2017;4:9. .

    [168] Zhu Z, et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat Commun. 2021;12:1666. .

    [169] Weber M, et al. MINSTED nanoscopy enters the Angstrom localization range. Nat Biotechnol. 2023;41:569–76. .

    [170] Woerdemann M, et al. Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams. Appl Phys Lett. 2011;98:11. .

    [171] Yang Y, et al. Optical trapping with structured light: a review. Adv Photonics. 2021;3:034001. .

    [172] Yeshchenko OA, et al. Temperature dependence of the surface plasmon resonance in gold nanoparticles. Surf Sci. 2013;608:275–81. .

    [173] Judek J, et al. Titanium nitride as a plasmonic material from near-ultraviolet to very-long-wavelength infrared range. Materials (Basel). 2021;14:22. .

    [174] He W, et al. Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy. Biomaterials. 2017;132:37–47. .

    [175] Chang CC, et al. Highly plasmonic titanium nitride by room-temperature sputtering. Sci Rep. 2019;9:15287. .

    [176] Luo J, et al. Tailored organic electro-optic materials and their hybrid systems for device applications. Chem Mater. 2010;23:544–53. .

    [177] Melikyan A, et al. High-speed plasmonic phase modulators. Nat Photonics. 2014;8:229–33. .

    [178] Karst J, et al. Electrically switchable metallic polymer nanoantennas. Science. 2021;374:612–6. .

    Jiyong Wang, Lei Zhang, Min Qiu. Nonlinear plasmonics: second-harmonic generation and multiphoton photoluminescence[J]. PhotoniX, 2023, 4(1): 32
    Download Citation