• Laser & Optoelectronics Progress
  • Vol. 60, Issue 11, 1106019 (2023)
Yang Rui1, Liang Zhang1, Chunyang Duan1, Pengyue Liu1..., Shichuan Yu1, Yuelong Wu1,2,* and Haibin Wu1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
  • 2Institute of Quantum Science and Precision Measurement, East China Normal University, Shanghai 200241, China
  • show less
    DOI: 10.3788/LOP231302 Cite this Article Set citation alerts
    Yang Rui, Liang Zhang, Chunyang Duan, Pengyue Liu, Shichuan Yu, Yuelong Wu, Haibin Wu. Realization of the 6Li Cold Atom Interferometer and Precise Measurement of Recoil Frequency[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106019 Copy Citation Text show less
    References

    [1] Holmgren W F, Revelle M C, Lonij V P A et al. Absolute and ratio measurements of the polarizability of Na, K, and Rb with an atom interferometer[J]. Physical Review A, 81, 053607(2010).

    [2] Peters A, Chung K Y, Chu S. High-precision gravity measurements using atom interferometry[J]. Metrologia, 38, 25-61(2001).

    [3] Sugarbaker A, Dickerson S M, Hogan J M et al. Enhanced atom interferometer readout through the application of phase shear[J]. Physical Review Letters, 111, 113002(2013).

    [4] Lamporesi G, Bertoldi A, Cacciapuoti L et al. Determination of the Newtonian gravitational constant using atom interferometry[J]. Physical Review Letters, 100, 050801(2008).

    [5] Jain M, Tino G M, Cacciapuoti L et al. New apparatus design for high-precision measurement of G with atom interferometry[J]. The European Physical Journal D, 75, 197(2021).

    [6] Gustavson T L, Bouyer P, Kasevich M A. Precision rotation measurements with an atom interferometer gyroscope[J]. Physical Review Letters, 78, 2046-2049(1997).

    [7] McGuirk J M, Foster G T, Fixler J B et al. Sensitive absolute-gravity gradiometry using atom interferometry[J]. Physical Review A, 65, 033608(2002).

    [8] Biedermann G W, Wu X, Deslauriers L et al. Testing gravity with cold-atom interferometers[J]. Physical Review A, 91, 033629(2015).

    [9] Asenbaum P, Overstreet C, Kim M et al. Atom-interferometric test of the equivalence principle at the 10-12 level[J]. Physical Review Letters, 125, 191101(2020).

    [10] Hohensee M A, Müller H, Wiringa R B. Equivalence principle and bound kinetic energy[J]. Physical Review Letters, 111, 151102(2013).

    [11] Overstreet C, Asenbaum P, Kovachy T et al. Effective inertial frame in an atom interferometric test of the equivalence principle[J]. Physical Review Letters, 120, 183604(2018).

    [12] Zhou L, Long S T, Tang B A et al. Test of equivalence principle at 10-8 level by a dual-species double-diffraction Raman atom interferometer[J]. Physical Review Letters, 115, 013004(2015).

    [13] Hamilton P, Jaffe M, Haslinger P et al. Atom-interferometry constraints on dark energy[J]. Science, 349, 849-851(2015).

    [14] Jaffe M, Haslinger P, Xu V et al. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass[J]. Nature Physics, 13, 938-942(2017).

    [15] Chung K Y, Chiow S W, Herrmann S et al. Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics[J]. Physical Review D, 80, 016002(2009).

    [16] Jeffery A M, Elmquist R E, Lee L H et al. NIST comparison of the quantized Hall resistance and the realization of the SI OHM through the calculable capacitor[J]. IEEE Transactions on Instrumentation and Measurement, 46, 264-268(1997).

    [17] Williams E R, Jones G R, Ye S et al. A low field determination of the proton gyromagnetic ratio in water[J]. IEEE Transactions on Instrumentation and Measurement, 38, 233-237(1989).

    [18] Puchalski M, Pachucki K. Quantum electrodynamics corrections to the 2P fine splitting in Li[J]. Physical Review Letters, 113, 073004(2014).

    [19] Parker R H, Yu C, Zhong W et al. Measurement of the fine-structure constant as a test of the standard model[J]. Science, 360, 191-195(2018).

    [20] Morel L, Yao Z B, Cladé P et al. Determination of the fine-structure constant with an accuracy of 81 parts per trillion[J]. Nature, 588, 61-65(2020).

    [21] Hanneke D, Fogwell S, Gabrielse G. New measurement of the electron magnetic moment and the fine structure constant[J]. Physical Review Letters, 100, 120801(2008).

    [22] Cassella K, Copenhaver E, Estey B et al. Recoil-sensitive lithium interferometer without a subrecoil sample[J]. Physical Review Letters, 118, 233201(2017).

    [23] Wei R, Mueller E J. Magnetic-field dependence of Raman coupling in alkali-metal atoms[J]. Physical Review A, 87, 042514(2013).

    [24] Deng S J, Shi Z Y, Diao P P et al. Observation of the Efimovian expansion in scale invariant Fermi gases[J]. Science, 353, 371-374(2016).

    [25] Li R, Wu Y L, Rui Y et al. Absolute frequency measurement of 6Li D lines with khz-level uncertainty[J]. Physical Review Letters, 124, 063002(2020).

    [26] Li R, Wu Y L, Rui Y et al. Observation of subnatural-linewidth spectra in cold 6Li atoms[J]. Physical Review A, 103, 032823(2021).

    [27] Rui Y, Zhang L A, Li R et al. Recoil frequency measurement with ppb-level uncertainty by 6Li atom interferometer[J]. Physical Review Research, 5, 023052(2023).

    [28] Castin Y, Wallis H, Dalibard J. Limit of Doppler cooling[J]. Journal of the Optical Society of America B, 6, 2046-2057(1989).

    [29] Wallis H, Ertmer W. Broadband laser cooling on narrow transitions[J]. Journal of the Optical Society of America B, 6, 2211-2219(1989).

    [30] Loftus T H, Ido T, Ludlow A D et al. Narrow line cooling: finite photon recoil dynamics[J]. Physical Review Letters, 93, 073003(2004).

    [31] Chen H Z, Yao X C, Wu Y P et al. Narrow-linewidth cooling of 6Li atoms using the 2S-3P transition[J]. Applied Physics B, 122, 281(2016).

    [32] Cassella K. Hot beats and tune outs: atom interferometry with laser-cooled lithium[D](2018).

    [33] Bordé C J, Salomon C, Avrillier S et al. Optical Ramsey fringes with traveling waves[J]. Physical Review A, 30, 1836-1848(1984).

    [34] Dubosclard W, Kim S, Garrido Alzar C L. Nondestructive microwave detection of a coherent quantum dynamics in cold atoms[J]. Communications Physics, 4, 35(2021).

    [35] Williams J R. Universal few-body physics in a three-component Fermi gas[D](2010).

    [36] Olson J, Fox R W, Fortier T M et al. Ramsey-Bordé matter-wave interferometry for laser frequency stabilization at 10-16 frequency instability and below[J]. Physical Review Letters, 123, 073202(2019).

    [37] Keupp J, Douillet A, Mehlstäubler T E et al. A high-resolution Ramsey-Bordé spectrometer for optical clocks based on cold Mg atoms[J]. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 36, 289-294(2005).

    [38] Rocco E, Palmer R N, Valenzuela T et al. Fluorescence detection at the atom shot noise limit for atom interferometry[J]. New Journal of Physics, 16, 093046(2014).

    [39] Pappa M, Condylis P C, Konstantinidis G O et al. Ultra-sensitive atom imaging for matter-wave optics[J]. New Journal of Physics, 13, 115012(2011).

    [40] Tiesinga E, Mohr P J, Newell D B et al. CODATA recommended values of the fundamental physical constants: 2018[J]. Reviews of Modern Physics, 93, 025010(2021).

    [41] Bouchendira R, Cladé P, Guellati-Khélifa S et al. New determination of the fine structure constant and test of the quantum electrodynamics[J]. Physical Review Letters, 106, 080801(2011).

    [42] Chiow S W, Kovachy T, Chien H C et al. 102ℏk large area atom interferometers[J]. Physical Review Letters, 107, 130403(2011).

    Yang Rui, Liang Zhang, Chunyang Duan, Pengyue Liu, Shichuan Yu, Yuelong Wu, Haibin Wu. Realization of the 6Li Cold Atom Interferometer and Precise Measurement of Recoil Frequency[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106019
    Download Citation