• Infrared and Laser Engineering
  • Vol. 52, Issue 8, 20230337 (2023)
Zhenxu Bai1,2, Xin Hao1,2, Hao Zheng1,2, Hui Chen1,2..., Yaoyao Qi1,2, Jie Ding1,2, Bingzheng Yan1,2, Can Cui1,2, Yulei Wang1,2,* and Zhiwei Lv1,2,*|Show fewer author(s)
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    DOI: 10.3788/IRLA20230337 Cite this Article
    Zhenxu Bai, Xin Hao, Hao Zheng, Hui Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Can Cui, Yulei Wang, Zhiwei Lv. Research progress of high-power free-space Raman amplification technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230337 Copy Citation Text show less
    Approaches toward high-power lasing
    Fig. 1. Approaches toward high-power lasing
    Schematic diagram of SRS energy level transition
    Fig. 2. Schematic diagram of SRS energy level transition
    (a) Schematic diagram of FWM phase matching; (b) Energy level transition diagram of anti-Stokes Raman scattering
    Fig. 3. (a) Schematic diagram of FWM phase matching; (b) Energy level transition diagram of anti-Stokes Raman scattering
    Schematic diagram of beam cleaning device [81]
    Fig. 4. Schematic diagram of beam cleaning device [81]
    Schematic diagram of CH4 gas double-pass Raman amplifier[90]
    Fig. 5. Schematic diagram of CH4 gas double-pass Raman amplifier[90]
    Schematic diagram of Raman beam combination in CH4 gas[98]
    Fig. 6. Schematic diagram of Raman beam combination in CH4 gas[98]
    Schematic diagram of Raman beam combination in H2 gas [100]
    Fig. 7. Schematic diagram of Raman beam combination in H2 gas [100]
    Schematic diagram of BaWO4 forward Raman amplifier[76]
    Fig. 8. Schematic diagram of BaWO4 forward Raman amplifier[76]
    Schematic diagram of YVO4 non-collinear Raman amplifier[113]
    Fig. 9. Schematic diagram of YVO4 non-collinear Raman amplifier[113]
    Schematic diagram of Raman beam combination in BaWO4[117]
    Fig. 10. Schematic diagram of Raman beam combination in BaWO4[117]
    Schematic diagram of Raman beam combination in diamond[66]
    Fig. 11. Schematic diagram of Raman beam combination in diamond[66]
    YearRaman medium StructurePump wavelength/μm Stokes wavelength/μm Output energy/mJ Pulse duration/ns Peak power/MW Ref.
    1979H2Beam combination1.061.133603120[100]
    1980CH4Beam combination0.2480.268-7-[98]
    1983H2Collinear amplifier0.3080.35320504[81]
    1986CH4/H2Beam combination0.2490.268/0.2778400/5000--[101]
    1989H2Beam combination0.3530.414800--[99]
    1996H2Collinear amplifier0.3900.4650.020.0003557.1[73]
    2001CH4Collinear amplifier0.2480.268-5-[83]
    2009D2Collinear amplifier1.0641.560250462.5[79]
    2016H2Collinear amplifier1.061.944--[80]
    Table 1. Research progress of Raman amplifier in gas
    YearRaman mediumStructurePump wavelength/ μm Stokes wavelength/ μm Output energy/ mJ Pulse duration/ns Peak power/MW Ref.
    2008Ba(NO3)2Collinear amplifier1.0641.19763--[106]
    2008Ba(NO3)2Non-collinear amplifier0.8000.873310−430000[114]
    2009YVO4Collinear amplifier1.0641.1743×10−36×10−30.5[107]
    2013Ba(NO3)2Serial laser beam combination1.3191.530503×10−21667[115]
    2014BaWO4Collinear amplifier1.0641.18071.5174.2[109]
    2014PbWO4Collinear amplifier1.0641.17811--[110]
    2015CaWO4Serial laser beam combination1.0641.17826.72.99.2[116]
    2015DiamondCollinear amplifier1.0641.240--0.00696[111]
    2015DiamondParallel laser beam combination1.0641.240--0.00878[66]
    2018BaWO4Collinear amplifier1.0621.1783.5--[89]
    2019BaWO4Serial laser beam combination1.0621.17841.044.10.93[117]
    Table 2. Research progress of crystalline Raman amplifier
    Zhenxu Bai, Xin Hao, Hao Zheng, Hui Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Can Cui, Yulei Wang, Zhiwei Lv. Research progress of high-power free-space Raman amplification technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230337
    Download Citation