• Infrared and Laser Engineering
  • Vol. 52, Issue 8, 20230337 (2023)
Zhenxu Bai1,2, Xin Hao1,2, Hao Zheng1,2, Hui Chen1,2..., Yaoyao Qi1,2, Jie Ding1,2, Bingzheng Yan1,2, Can Cui1,2, Yulei Wang1,2,* and Zhiwei Lv1,2,*|Show fewer author(s)
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    DOI: 10.3788/IRLA20230337 Cite this Article
    Zhenxu Bai, Xin Hao, Hao Zheng, Hui Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Can Cui, Yulei Wang, Zhiwei Lv. Research progress of high-power free-space Raman amplification technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230337 Copy Citation Text show less
    References

    [1] T Steinmetz, T Wilken, C Araujo-hauck, et al. Laser frequency combs for astronomical observations. Science, 321, 1335-1337(2008).

    [2] R R Gattass, E Mazur. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2, 219-225(2008).

    [3] A C Tam, W P Leung, W Zapka, et al. Laser-cleaning techniques for removal of surface particulates. Journal of Applied Physics, 71, 3515-3523(1992).

    [4] R Betti, O A Hurricane. Inertial-confinement fusion with lasers. Nature Physics, 12, 435-448(2016).

    [5] N M Fried, P B Irby. Advances in laser technology and fibre-optic delivery systems in lithotripsy. Nature Reviews Urology, 15, 563-573(2018).

    [6] J Zuo, X Lin. High-power laser systems. Laser & Photonics Reviews, 16, 2100741(2022).

    [7] C Jauregui, J Limpert, A Tünnermann. High-power fibre lasers. Nature Pphotonics, 7, 861-867(2013).

    [8] Zhenxu Bai, Hui Chen, Yuqi Li, . Development of beam brightness enhancement based on diamond Raman conversion. Infrared and Laser Engineering, 50, 20200098(2021).

    [9] U Brauch, C Röcker, T Graf, et al. High-power, high-brightness solid-state laser architectures and their characteristics. Applied Physics B, 128, 58(2022).

    [10] D Y Shen, J K Sahu, W A Clarkson. Highly efficient in-band pumped Er: YAG laser with 60 W of output at 1645 nm. Optics Letters, 31, 754-756(2006).

    [11] Hiromasa Ichikawa, Kohki Yamaguchi, Tomo Katsumata, et al. High-power and highly efficient composite laser with an anti reflection coated layer between a laser crystal and a diamond heat spreader fabricated by room-temperature bonding. Optics Express, 25, 22797-22804(2017).

    [12] Wanru Zhang, Rongtao Su, Can Li, . Research progress of narrow linewidth fiber laser oscillator (invited). Infrared and Laser Engineering, 51, 20210879(2022).

    [13] Z Wang, H Wu, M Fan, et al. High power random fiber laser with short cavity length: theoretical and experimental investigations. IEEE Journal of Selected Topics in Quantum Electronics, 21, 0900506(2015).

    [14] K Zhong, X Zhang, D Xu, . Progress of all-solid-state dual-wavelength lasers (invited). Electro-Optic Technology Application, 37, 13-26,78(2022).

    [15] Z Bai, R J Williams, O Kitzler, et al. Diamond Brillouin laser in the visible. APL Photonics, 5, 031301(2020).

    [16] Z Bai, Z Zhang, K Wang, et al. Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method. Nanomaterials, 11, 1572(2021).

    [17] D J Ripin, J R Ochoa, R L Aggarwal, et al. 165-W cryogenically cooled Yb: YAG laser. Optics Letters, 29, 2154-2156(2004).

    [18] Huihua Wang, Longxin Lin, Xin Ye. Progress and tendency of high power slab lasers. Infrared and Laser Engineering, 49, 20190456(2020).

    [19] J Bromage, S W Bahk, I A Begishev, et al. Technology development for ultraintense all-OPCPA systems. High Power Laser Science and Engineering, 7, e4(2019).

    [20] Z Bai, H Chen, X Gao, et al. Highly compact nanosecond laser for space debris tracking. Optical Materials, 98, 109470(2019).

    [21] Jianli Shang, Juntao Wang, Wanjing Peng, . Research progress and prospects of laser diode pumped high-energy laser. High Power Laser and Particle Beams, 34, 011007(2022).

    [22] S Li, Y Wang, Z Lu, et al. Hundred-Joule-level, nanosecond-pulse Nd: glass laser system with high spatiotemporal beam quality. High Power Laser Science and Engineering, 4, e10(2016).

    [23] Z N Bai, Z X Bai, C Yang, et al. High pulse energy, high repetition picosecond chirped-multi-pulse regenerative amplifier laser. Optics & Laser Technology, 46, 25-28(2013).

    [24] C Jauregui, C Stihler, J Limpert. Transverse mode instability. Advances in Optics and Photonics, 12, 429-484(2020).

    [25] Lei Li, Jianlei Wang, Xiaojin Cheng, . Cryogenic Yb: YAG solid state pulsed laser amplifier. Infrared and Laser Engineering, 42, 1170-1173(2013).

    [26] L Sun, T Liu, X Fu, et al. 1.57 times diffraction-limit high-energy laser based on a Nd: YAG slab amplifier and an adaptive optics system. Chinese Optics Letters, 17, 051403(2019).

    [27] Jianguo He, Ming Li, Zeqiang Mo, . Study on longitudinal forced convection heat transfer for high power slab media. Infrared and Laser Engineering, 49, 20200556(2020).

    [28] Zhenxu Bai, Yulei Wang, Zhiwei Lv, . Research progress of serial laser beam combination based on stimulated Brillouin amplification. Laser & Optoelectronics Progress, 52, 110004(2015).

    [29] Zhenxu Bai, Xuezong Yang, Hui Chen, . Research progress of high-power diamond laser technology (Invited). Infrared and Laser Engineering, 49, 20201076(2020).

    [30] Chen Yi. Research on laser beam combination based on noncollinear Brillouin serial amplification[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)

    [31] McNaught S J, Asman C P, Injeyan H, et al. 100kW coherently combined Nd: YAG MOPA laser array[C]Frontiers in Optics, 2009: FThD2.

    [32] Pu Zhou, Rongtao Su, Yanxing Ma, . Review of coherent laser beam combining research progress in the past decade. Chinese Journal of Lasers, 48, 0401003(2021).

    [33] Xiaoxi Liu, Xuefeng Wang, Junlong Wang, . External cavity spectral beam combining of fiber lasers. Chinese Journal of Lasers, 45, 0801009(2018).

    [34] Zejin Liu, Xiaoxi Jin, Rongtao Su, et al. Development status of high power fiber lasers and their coherent beam combination. Science China Information Sciences, 62, 41301(2019).

    [35] Can Cui, Yulei Wang, Zhiwei Lu, et al. Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification. Optics Express, 26, 32717-32727(2018).

    [36] Can Cui, Yue Wang, Yulei Wang, . Research progress on nonlinear optics laser beam combining technology. High Power Laser and Particle Beams, 35, 041006(2023).

    [37] S K Alavipanah, H R Matinfar, E A Rafiei, et al. Criteria of selecting satellite data for studying land resources. Desert, 15, 83-102(2010).

    [38] I D Vatnik, D V Churkin, S A Babin, et al. Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm. Optics Express, 19, 18486-18494(2011).

    [39] Z Bai, R J Williams, O Kitzler, et al. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement. Optics Express, 26, 19797-19803(2018).

    [40] Chengao Yang, Yi Zhang, Jinming Shang, . Research progress of 2-4 μm mid-infrared antimonide semiconductor lasers (Invited). Infrared and Laser Engineering, 49, 20201075(2020).

    [41] Yi Chen, Gaoyou Liu, Ruixue Wang, . Research progress of nonlinear crystal applied in mid-and long-wave infrared solid-state laser. Journal of Synthetic Crystals, 49, 1379-1395(2020).

    [42] Wei You, Xuezong Yang, Weibiao Chen, . Review of 589 nm sodium laser guide stars (invited). Electro-Optic Technology Application, 36, 1-14, 22(2021).

    [43] Zhenxu Bai, Jia Gao, Chen Zhao, . Research progress of long-wave infrared lasers based on nonlinear frequency conversion. Acta Optica Sinica, 43, 0314001(2023).

    [44] Sutherl R L. Hbook of Nonlinear Optics[M]. 2nd ed. Boca Raton: CRC Press, 2003.

    [45] G D Boyd, D A Kleinman. Parametric interaction of focused gaussian light beams. Journal of Applied Physics, 39, 3597-3639(1968).

    [46] C̆ Pavel, H Jelı́nková, P G Zverev, et al. Solid state lasers with Raman frequency conversion. Progress in Quantum Electronics, 28, 113-143(2004).

    [47] Zhenxu Bai, Chen Zhao, Jia Gao, et al. Optical parametric oscillator with adjustable pulse width based on KTiOAsO4. Optical Materials, 136, 113506(2023).

    [48] Y Wang, B Luther-davies, Y H Chuang, et al. Highly efficient conversion of picosecond Nd laser pulses with the use of group-velocity-mismatched frequency doubling in KDP. Optics Letters, 16, 1862-1864(1991).

    [49] P A Budni, L A Pomeranz, M L Lemons, et al. Efficient mid-infrared laser using 1.9-µm-pumped Ho: YAG and ZnGeP2 optical parametric oscillators. Journal of the Optical Society of America B, 17, 723-728(2000).

    [50] Yadong Jiao, Zhixu Jia, Xiaohui Guo, . Progress on mid-infrared glass optical fiber materials and Raman laser source (invited). Infrared and Laser Engineering, 52, 20230228(2023).

    [51] S M Spillane, T J Kippenberg, K J Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 415, 621-623(2002).

    [52] J A Piper, H M Pask. Crystalline Raman lasers. IEEE Journal of Selected Topics in Quantum Electronics, 13, 692-704(2007).

    [53] N Bloembergen, G Bret, P Lallemand, et al. Controlled stimulated Raman amplification and oscillation in hydrogen gas. IEEE Journal of Quantum Electronics, 3, 197-201(1967).

    [54] Hui Chen, Zhenxu Bai, Chen Zhao, et al. Numerical simulation of long-wave infrared generation using an external cavity diamond raman laser. Frontiers in Physics, 9, 671559(2021).

    [55] O Kitzler, A Mckay, D J Spence, . et al. Modelling and optimization of continuous-wave external cavity Raman lasers. Optics Express, 23, 8590-8602(2015).

    [56] Shihui Ma, Heng Tu, Dazhi Lu, et al. Efficient Raman red laser with second-order stokes effect of diamond crystal. Optics Communications, 478, 126399(2021).

    [57] R J Williams, D J Spence, O Lux, et al. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond. Optics Express, 25, 749-757(2017).

    [58] Muye Li, Xuezong Yang, Yuxiang Sun, . Single-frequency continuous-wave diamond Raman laser (invited). Infrared and Laser Engineering, 51, 20210970(2022).

    [59] Zhenxu Bai, Hui Chen, Zhanpeng Zhang, . Hundred-watt dual-wavelength diamond Raman laser at 1.2/1.5 μm (invited). Infrared and Laser Engineering, 50, 20210685(2021).

    [60] Q Sheng, R Li, A J Lee, et al. A single-frequency intracavity Raman laser. Optics Express, 27, 8540-8553(2019).

    [61] V R Supradeepa, Y Feng, J W Nicholson. Raman fiber lasers. Journal of Optics, 19, 023001(2017).

    [62] Shuzhen Cui, Xin Zeng, Xin Cheng, . Generation of 10 W yellow fiber laser by frequency doubling of cascaded raman laser. Chinese Journal of Lasers, 48, 1601006(2021).

    [63] M N Islam. Raman amplifiers for telecommunications. IEEE Journal of Selected Topics in Quantum Electronics, 8, 548-559(2002).

    [64] Y Feng, L R Taylor, D B Calia. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star. Optics Express, 17, 19021-19026(2009).

    [65] R J Williams, O Kitzler, Z Bai, et al. High power diamond Raman lasers. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1602214(2018).

    [66] A Mckay, D J Spence, D W Coutts, et al. Diamond-based concept for combining beams at very high average powers. Laser & Photonics Review, 11, 1600130(2017).

    [67] Wang Cong. The theetical experimental studies of crystalline Raman amplifier antiStokes laser[D]. Jinan: Shong University, 2014. (in Chinese)

    [68] R W Hellwarth. Theory of stimulated Raman scattering. Physical Review, 130, 1850-1852(1963).

    [69] C S Wang. Theory of stimulated Raman scattering. Physical Review, 182, 482-494(1969).

    [70] Y R Shen, N Bloembergen. Theory of stimulated brillouin and raman scattering. Physical Review, 137, 1787-1805(1965).

    [72] Cong Wang, Dongxiang Lv. Theoretical analysis on crystalline Raman amplifier. Infrared and Laser Engineering, 47, 1105007(2018).

    [73] V Krylov, A Rebane, D Erni, . et al. Stimulated Raman amplification of femtosecond pulses in hydrogen gas. Optics Letters, 21, 2005-2007(1996).

    [74] Z Ye, Q Lou, J Dong, . Experimental research on backward SRS pumped by high power KrF laser. Chinese Journal of Lasers, 30, 223-226(2003).

    [75] D C Hanna, D J Pointer, D J Pratt. Stimulated Raman-scattering of picosecond light-pulses in hydrogen, deuterium, and methane. IEEE J Quantum Electron, 22, 332-336(1983).

    [76] W R Trutna, Y K Park, R L Byer. Dependence of Raman gain on pump laser bandwidth. IEEE J Quantum Electron, 15, 648-655(1979).

    [77] W K Bischel, M J Dyer. Temperature-dependence of the raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2. Physical Review A, 33, 3113-3123(1986).

    [78] W H Culver, J T A Vanderslice, V W T Townsend. Controlled generation of intense light pulses in reverse-pumped Raman lasers. Applied Physics Letters, 12, 189-190(1968).

    [79] W P Hooper, G M Frick, B P Michael. Using backward Raman scattering from coupled deuterium cells for wavelength shifting. Optical Engineering, 48, 084302(2009).

    [80] Dongjian Zhou, Jingwei Guo, Canhua Zhou, et al. Backward raman scattering and amplification based on dual raman cells. Chinese Journal of Lasers, 43, 0402006(2016).

    [81] R S F Chang, N Djeu. Amplification of a diffraction-limited Stokes beam by a severely distorted pump. Optics Letters, 8, 139-141(1983).

    [82] E A Stappaerts, W H Long, H. Komine. Gain enhancement in Raman amplifiers with broad band pumping. Optics Letters, 5, 4-6(1980).

    [83] Bo Lei, Qihong Lou, Jingxing Dong, . Broadband Raman amplification with coaxal laser pumping. Chinese Journal of Lasers, 28, 289-292(2001).

    [84] R Stegeman, C Rivero, G Stegeman, et al. Raman gain measurements in bulk glass samples. Journal of the Optical Society of America B, 22, 1861-1867(2005).

    [85] Qihong Lou, Dong Ning, Jinxing Dong. Wideband Raman amplification with tilted pumping beam. Acta Optica Sinica, 18, 1203-1207(1998).

    [86] K E Hill, G New, P A Rodgers, et al. The influence of noise and angular dispersion during short pulse Raman amplification. Optics Communications, 87, 315-322(1992).

    [87] M D Duncan, R Mahon, J Reintjes, et al. Parametric raman gain suppression in D2 and H2. Optics Letters, 11, 803-805(1986).

    [88] R Chang, R Lehmberg, M Duignan, et al. Raman beam cleanup of a severely aberrated pump laser. IEEE Journal of Quantum Electronics, 21, 477-487(1985).

    [89] Xue Feng. Studies on single longitudinal mode 589 nm laser based on crystalline Raman amplifier[D]. Jinan: Shangdong University, 2018. (in Chinese)

    [90] J Goldhar, M Taylor, J Murray. An efficient double-pass Raman amplifier with pump intensity averaging in a light guide. IEEE Journal of Quantum Electronics, 20, 772-785(1984).

    [91] S Szatmári, F P Schäfer. Generation of input signals for ArF amplifiers. Journal of the Optical Society of America B, 6, 1877-1883(1989).

    [92] J H Glownia, M Kaschke, P P Sorokin. Amplification of 193-nm femtosecond seed pulses generated by third-order, nonresonant, difference-frequency mixing in xenon. Optics Letters, 17, 337-339(1992).

    [93] H J Kong, J W Yoon, D H Beak, . et al. Beak, et al. Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part Beams, 25, 225-238(2007).

    [94] Jinbao Chen, Shaofeng Guo. Review on technical approaches of high energy solid-state-lasers. Chinese Journal of Lasers, 40, 0602006(2013).

    [95] Jie Mu, Feng Jing, Xiao Wang, et al. Error control of piston and tilt based on SPGD in coherent beam combination. Chinese Journal of Lasers, 41, 0602002(2014).

    [96] Y Chen, Z Lu, Y Wang, et al. Phase matching for noncollinear Brillouin amplification based on controlling of frequency shift of Stokes seed. Optics Letters, 39, 3047-3049(2014).

    [97] Y Wang, C Cui, Z Lu, et al. Beam spatial intensity modi-fication based on stimulated Brillouin amplification. Optics Express, 30, 35792-35806(2022).

    [98] R R Jacobs, J Goldhar, D Eimerl, et al. High-efficiency energy extraction in backward-wave Raman scattering. Applied Physics Letters, 37, 264-266(1980).

    [99] A Mandl, R Holmes, A Flusberg, et al. High-gain, high-efficiency stimulated Raman amplification with beam clean-up. Journal of Applied Physics, 66, 4625-4634(1989).

    [100] N G Basov, A Z Grasyuk, Y I Karev, et al. Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses. Soviet Journal of Quantum Electronics, 9, 780-781(1979).

    [101] M J Shaw, J P Partanen, Y Owadano, et al. High-power forward Raman amplifiers employing low-pressure gases in light guides. II. Experiments. Journal of the Optical Society of America B: Optical Physics, 3, 1466-1475(1986).

    [102] J P Partanen, M J Shaw. High-power forward Raman amplifiers employing low-pressure gases in light guides. I. Theory and applications. Journal of the Optical Society of America B: Optical Physics, 3, 1374-1389(1986).

    [103] Z Li, W Huang, Y Cui, et al. High-efficiency, high peak-power, narrow linewidth 1.9 μm fiber gas Raman amplifier. Journal of Lightwave Technology, 36, 3700-3706(2018).

    [104] Y Chen, Z Wang, Z Li, et al. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm. Optics Express, 25, 20944-20949(2017).

    [105] V Raghunathan, D Borlaug, R R Rice, et al. Demonstration of a mid infrared silicon Raman amplifier. Optics Express, 15, 14355-14362(2007).

    [106] V A Lisinetskii, V A Orlovich, H Rhee, et al. Efficient Raman amplification of low divergent radiation in barium nitrate crystal. Applied physics B, 91, 299-303(2008).

    [107] V V Yakovlev, G I Petrov, F Z Hao, et al. Stimulated Raman scattering: old physics, new applications. Journal of Modern Optics, 56, 1970-1973(2009).

    [108] Buganov O, Bus''Ko D, Grabtchikov A, et al. Raman amplification in KGW crystal at femtosecond pumping[C]European Conference on Lasers ElectroOptics the European Quantum Electronics Conference, 2009.

    [109] W Cong, Z Cong, Z Liu, et al. Theoretical and experimental investigation of an efficient pulsed barium tungstate Raman amplifier at 1180 nm. Optics Communications, 313, 80-84(2014).

    [110] Wenhui Zhang, Shuanghong Ding, Ze Ding, . A PbWO4 solid-state raman amplifier excited by 1064 nm nanosecond pulses. Chinese Journal of Lasers, 41, 0502011(2014).

    [111] A Mckay, R P Mildren, D W Coutts, et al. SRS in the strong-focusing regime for Raman amplifiers. Optics Express, 23, 15012-15020(2015).

    [113] Yang Xu, Meng Chen, Zhengwei Li, . Research of picosecond raman amplifier in YVO4 crystal. Chinese Journal of Lasers, 40, 1002005(2013).

    [114] F B Grigsby, D Peng, M C Downer. Chirped-pulse Raman amplification for two-color, high-intensity laser experiments. Journal of the Optical Society of America B, 25, 780-782(2009).

    [115] O V Kulagin, I A Gorbuno, A M Sergeev, et al. Picosecond Raman compression laser at 1530 nm with aberration compensation. Optics Letters, 38, 3237-3240(2013).

    [116] S Men, Z Liu, Z Cong, et al. Single-frequency CaWO4 Raman amplifier at 1178 nm. Optics Letters, 40, 530-533(2015).

    [117] Z Liu, H Rao, Z Cong, et al. Single-frequency BaWO4 Raman MOPA at 1178 nm with 100-ns pulse pump. Crystals, 9, 185(2019).

    [118] Xin Hao, Siyu Yin, Zongda Zhang, . Preparation and application of nitrogen vacancy color center in diamond (invited). Electro-Optic Technology Application, 37, 1-9, 57(2022).

    [119] Zhenxu Bai, Hui Chen, Jie Ding, . High-power brillouin frequency comb based on free-space optical cavity. Chinese Journal of Lasers, 49, 0415001(2022).

    CLP Journals

    [1] Zhiwei Lv, Zhongze Liu, Hui Chen, Duo Jin, Xin Hao, Wenqiang Fan, Yulei Wang, Zhenxu Bai. Review of multi-wavelength laser technology based on crystalline Raman conversion (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230420

    Zhenxu Bai, Xin Hao, Hao Zheng, Hui Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Can Cui, Yulei Wang, Zhiwei Lv. Research progress of high-power free-space Raman amplification technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230337
    Download Citation