[1] Her T H, Finlay R J, Wu C, et al.. Microstructuring of silicon with femtosecond laser pulses [J]. Appl Phys Lett, 1998, 73(12): 1673-1675.
[2] Her T H, Finlay R J, Wu C, et al.. Femtosecond laser-induced formation of spikes on silicon [J]. Appl Phys A, 2000, 70(4): 383-385.
[4] Halbwax M, Sarnet T, Delaporte P, et al.. Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication [J]. Thin Solid Films, 2008, 516(20): 6791-6795.
[5] Huang Z, Carey J E, Liu M, et al.. Microstructured silicon photodetector [J]. Appl Phys Lett, 2006, 89(3): 033506.
[6] Wu C, Crouch C H, Zhao L, et al.. Visible luminescence from silicon surfaces microstructured in air [J]. Appl Phys Lett, 2002, 81(11): 1999-2001.
[7] Emmony D C, Howson R P, Willis L J. Laser mirror damage in germanium at 10.6 μm [J]. Appl Phys Lett, 1973, 23(11): 598-600.
[8] Guo Xiaodong, Li Ruxin, Yu Bingkun, et al.. Recent developments in nanostructurs on material surface induced by femtosecond laser [J]. Laser & Optoelectronics Progress, 2006, 43(8): 3-12.
[9] Jia T Q, Chen H X, Huang M, et al.. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses [J]. Phys Rev B, 2005, 72(12): 125429.
[10] Wang Li, Ding Ting, Qiu Jianrong. Phenomena and mechanisms of single beam femtosecond laser induced periodic microstructures [J]. Physics, 2007, 36(1): 63-67.
[11] Chen Changshui, He HuiLi, Li Jianghua, et al.. The research and application of ultrafast laser microstructured silicon [J]. Laser & Optoelectronics Progress, 2012, 49(3): 030003.
[12] Manickam S, Venkatakrishnan K, Tan B, et al.. Study of silicon nanofibrous structure formed by femtosecond laser irradiation in air [J]. Opt Express, 2009, 17(16): 13869-13874.
[14] Peng Y, Hong M, Zhou Y, et al.. Influence of femtosecond laser pulse number on spike geometry of microstructured silicon [J]. Appl Phys Express, 2013, 6(5): 051303.
[15] Wen Ya, Peng Yan, Zhang Dongsheng, et al.. Effect of pulse energy of femtosecond laser on the formation of spikes on the silicon surface in the ambient gas of SF6 [J]. Chinese J Lasers, 2012, 39(4): 0406001.
[16] Ma Pengfei, Wang Kedong, Chang Fanggao, et al.. Effects of the irradiation on silicon by femtosecond laser of various energy densities [J]. J Synthetic Crystals, 2013, 42(2): 273-277.
[17] Yang Huan, Huang Shan, Duan Jun, et al.. Contrastive study on laser ablation of single-crystal silicon by 1030 nm femtosecond laser and 355 nm nanosecond laser [J]. Chinese J Lasers, 2013, 40(1): 0103003.
[18] Tull B R, Carey J E, Mazur E, et al.. Silicon surface morphologies after femtosecond laser irradiation [J]. MRS Bulletin, 2006, 31(8): 626-633.
[19] Peng Y, Wen Y, Zhang D S, et al.. Optimal proportional relation between laser power and pulse number for the fabrication of surface-microstructured silicon [J]. Appl Opt, 2011, 50(24): 4765-4768.
[21] Zhu J T, Shen Y F, Li W, et al.. Effect of polarization on femtosecond laser pulses structuring silicon surface [J]. Appl Surf Sci, 2006, 252(8): 2752-2756.
[22] Shen M Y, Crouch C H, Carey J E, et al.. Femtosecond laser-induced formation of submicrometer spikes on silicon in water [J]. Appl Phys Lett, 2004, 85(23): 5694-5696.
[25] Ma Pengfei, Liu Zhongshan, Chang Fanggao, et al.. Irradiated damages of femtosecond laser in two different monocrystalline silicon wafers [J]. J Synthetic Crystals, 2013, 42(1): 99-104.
[26] Liu Kui, Feng Guoying, Deng Guoliang, et al.. Difference in microstructures induced by femtosecond laser scanning on silicon surface at different temperatures [J]. Chinese J Lasers, 2012, 39(8): 0803003.
[27] Serpenguzel A, Kurt A, Inan I, et al.. Luminescence of black silicon [J]. J Nanophotonics, 2008, 2(1): 021770.
[28] Chen T, Si J, Hou X, et al.. Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses [J]. J Appl Phys, 2011, 110(7): 073106.
[29] Lü Q, Wang J, Liang C, et al.. Strong infrared photoluminescence from black silicon made with femtosecond laser irradiation [J]. Opt Lett, 2013, 38(8): 1274-1276.
[30] Patankar N A. Transition between superhydrophobic states on rough surfaces [J]. Langmuir, 2004, 20(17): 7097-7102.
[31] Zorba V, Persano L, Pisignano D, et al.. Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation [J]. Nanotechnology, 2006, 17(13): 3234-3238.
[32] Zorba V, Stratakis E, Barberoglou M, et al.. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf [J]. Adv Mater, 2008, 20(21): 4049-4054.
[33] Zorba V, Stratakis E, Barberoglou M, et al.. Tailoring the wetting response of silicon surfaces via fs laser structuring [J]. Appl Phys A, 2008, 93(4): 819-825.