• Matter and Radiation at Extremes
  • Vol. 8, Issue 3, 035901 (2023)
X. H. Yang1,2, Z. H. Chen1, H. Xu2,3, Y. Y. Ma2,4..., G. B. Zhang1, D. B. Zou5 and F. Q. Shao5|Show fewer author(s)
Author Affiliations
  • 1Department of Nuclear Science and Technology, National University of Defense Technology, Changsha 410073, China
  • 2Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3School of Computer Science, National University of Defense Technology, Changsha 410073, China
  • 4College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 5Department of Physics, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.1063/5.0137973 Cite this Article
    X. H. Yang, Z. H. Chen, H. Xu, Y. Y. Ma, G. B. Zhang, D. B. Zou, F. Q. Shao. Hybrid PIC–fluid simulations for fast electron transport in a silicon target[J]. Matter and Radiation at Extremes, 2023, 8(3): 035901 Copy Citation Text show less
    References

    [1] E. M.Campbell, M. E.Glinsky, J.Hammer, W. L.Kruer, R. J.Mason, M. D.Perry, M.Tabak, S. C.Wilks, J.Woodworth. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas, 1, 1626(1994).

    [2] M.Borghesi, Z. Y.Ge, Y. Y.Ma, F. Q.Shao, H.Xu, X. H.Yang, H. B.Zhuo. Effects of filamentation instability on the divergence of relativistic electrons driven by ultraintense laser pulses. Phys. Plasmas, 23, 103110(2016).

    [3] E.d’Humières, A.Debayle, J. J.Honrubia, V. T.Tikhonchuk. Divergence of laser-driven relativistic electron beams. Phys. Rev. E, 82, 036405(2010).

    [4] C. D.Chen, E. A.Chowdhury, R. R.Freeman, M.McMahon, A.Morace, V. M.Ovchinnikov, D. W.Schumacher. Effects of preplasma scale length and laser intensity on the divergence of laser-generated hot electrons. Phys. Rev. Lett., 110, 065007(2013).

    [5] D.Bénisti, A.Bret, L.Gremillet, E.Lefebvre. Linear and nonlinear development of oblique beam-plasma instabilities in the relativistic kinetic regime. Phys. Plasmas, 14, 040704(2007).

    [6] W. J.Ding, B.Hao, X.Kong, J.Mu, C.Ren, Z. M.Sheng, J.Zhang. Collisional effects on the oblique instability in relativistic beam-plasma interactions. Phys. Plasmas, 19, 072709(2012).

    [7] A.Bret. Weibel, two-stream, filamentation, oblique, Bell, Buneman…which one grows faster?. Astrophys. J, 699, 990-1003(2009).

    [8] D.Batani, S.Baton, F. N.Beg, R.Kodama, P. M.Nilson, P.Norreys, P.Patel, F.Pérez, J. J.Santos, R. H. H.Scott, V. T.Tikhonchuk, M.Wei, J.Zhang. Fast electron energy transport in solid density and compressed plasma. Nucl. Fusion, 54, 054004(2014).

    [9] P. A.Norreys, A. P. L.Robinson, M.Sherlock. Artificial collimation of fast-electron beams with two laser pulses. Phys. Rev. Lett., 100, 025002(2008).

    [10] L. Y.Chew, X. T.He, C. T.Zhou. Propagation of energetic electrons in a hollow plasma fiber. Appl. Phys. Lett., 97, 051502(2010).

    [11] Z.Li, J.Liu, Y.Tian, Z.Xu, Y.Zeng, C.Zhou. Experimental study on laser-driven electron collimation along wire targets. Phys. Plasmas, 26, 012701(2019).

    [12] N.Booth, M.Burza, D. C.Carroll, M. P.Desjarlais, F.Du, R. J.Gray, D. A.MacLellan, P.McKenna, D.Neely, H. W.Powell, A. P. L.Robinson, G. G.Scott, C.-G.Wahlstr?m, X. H.Yuan. Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt. Phys. Rev. Lett., 113, 185001(2014).

    [13] D.Batani, S. D.Baton, F. N.Beg, J.Breil, R.Fedosejevs, J.-L.Feugeas, P.Forestier-Colleoni, C.Fourment, S.Fujioka, L.Giuffrida, S.Hulin, S.Kerr, H. S.McLean, A.Morace, M.Nakatsutsumi, P.Nicola?, R.Nuter, J. J.Santos, H.Sawada, V. T.Tikhonchuk, M.Touati, X.Vaisseau. Collimated propagation of fast electron beams accelerated by high-contrast laser pulses in highly resistive shocked carbon. Phys. Rev. Lett., 118, 205001(2017).

    [14] R. B.Campbell, J. S.DeGroot, T. A.Mehlhorn, B. V.Oliver, D. R.Welch. Collimation of PetaWatt laser-generated relativistic electron beams propagating through solid matter. Phys. Plasmas, 10, 4169(2003).

    [15] H. B.Cai, T.Jozaki, R. J.Mason, K.Mima, H.Nagatomo, A.Sunahara, W. M.Zhou. Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition. Phys. Rev. Lett, 102, 245001(2009).

    [16] Y. Y.Ma, F. Q.Shao, C. L.Tian, H.Xu, X. H.Yang, Y.Yin, M. Y.Yu, H. B.Zhuo. Propagation of attosecond electron bunches along the cone-and-channel target. Phys. Plasmas, 18, 023109(2011).

    [17] Z. L.Chen, T. E.Cowan, R. R.Freeman, J.Fuchs, S. P.Hatchett, Y.Izawa, M. H.Key, Y.Kitagawa, R.Kodama, K.Kondo, G. R.Kumar, T.Matsuoka, H.Nakamura, M.Nakatsutsumi, T.Norimatsu, P. A.Norreys, Y.Sentoku, R. A.Snavely, R. B.Stephens, M.Tampo, K. A.Tanaka, Y.Toyama, T.Yabuuchi. Plasma devices to guide and collimate a high density of MeV electrons. Nature, 432, 1005(2004).

    [18] D. C.Carroll, S.Kar, O.Lundh, K.Markey, P.McKenna, P.Norreys, A. P. L.Robinson, M.Zepf. Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields. Phys. Rev. Lett., 102, 055001(2009).

    [19] M.Borghesi, J.Liu, H.Xu, X. H.Yang. Control of fast electron propagation in foam target by high-Z doping. Plasma Phys. Controlled Fusion, 61, 025010(2019).

    [20] Y. Y.Ma, P.McKenna, C.Ren, Z. M.Sheng, H.Xu, X. H.Yang, Y.Yin, J.Zhang, H. B.Zhuo. Collimation of high-current fast electrons in dense plasmas with a tightly focused precursor intense laser pulse. Nucl. Fusion, 59, 126024(2019).

    [21] Z. Y.Ge, Y. Y.Ma, F. Q.Shao, H.Xu, X. H.Yang, H. B.Zhuo. Energy deposition of fast electrons in dense magnetized plasmas. Phys. Plasmas, 25, 063104(2018).

    [22] P.Gibbon, Y. T.Li, Z. M.Sheng, W. M.Wang. Magnetically assisted fast ignition. Phys. Rev. Lett., 114, 015001(2015).

    [23] M.Bailly-Grandvaux, D.Batani, C.Bellei, R.Bouillaud, M.Chevrot, J. E.Cross, R.Crowston, S.Dorard, J.-L.Dubois, M.Ehret, P.Forestier-Colleoni, S.Fujioka, L.Giuffrida, G.Gregori, J. J.Honrubia, S.Hulin, S.Kojima, E.Loyez, J.-R.Marquès, A.Morace, P.Nicola?, M.Roth, S.Sakata, J. J.Santos, G.Schaumann, F.Serres, J.Servel, V. T.Tikhonchuk, N.Woolsey, Z.Zhang. Guiding of relativistic electron beams in dense matter by laser driven magnetostatic fields. Nat. Commun., 9, 102(2018).

    [24] Y.Cao, L. X.Hu, Y.Lang, Y. Y.Ma, H.Xu, X. H.Yang, M. Y.Yu, T. P.Yu, G. B.Zhang. Transport of fast electron beam in mirror-field magnetized solid-density plasma. Phys. Plasmas, 28, 102701(2021).

    [25] A. R.Bell, J. R.Davies, S. M.Guérin, M. G.Haines. Short-pulse high-intensity laser-generated fast electron transport into thick solid targets. Phys. Rev. E, 56, 7193(1997).

    [26] P.Antici, P.Audebert, M.Borghesi, C. A.Cecchetti, J.Fuchs, L.Gremillet, T.Grismayer, A.Man?ic, P.Mora. Modeling target bulk heating resulting from ultra-intense short pulse laser irradiation of solid density targets. Phys. Plasmas, 20, 123116(2013).

    [27] K.Eidmann, S.Hüller, J.Meyer-ter-Vehn, T.Schlegel. Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter. Phys. Rev. E, 62, 1202(2000).

    [28] P.McKenna, A. P. L.Robinson, H.Schmitz. Resistivity of non-crystalline carbon in the 1–100 eV range. New J. Phys., 17, 083045(2015).

    [29] C.Bellei, L.Divol, A. J.Kemp, M. H.Key, D. J.Larson, M. M.Marinak, D. J.Strozzi, M.Tabak. Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields. Phys. Plasmas, 19, 072711(2012).

    [30] L.Spitzer. Physics of Fully Ionized Gasses(1962).

    [31] Y. Y.Ma, C.Ren, F. Q.Shao, H.Xu, X. H.Yang. Transport of ultraintense laser-driven relativistic electrons in dielectric targets. High Power Laser Sci. Eng., 8, e2(2020).

    [32] W. L.Kruer, A. B.Langdon, M.Tabak, S. C.Wilks. Absorption of ultra-intense laser pulse. Phys. Rev. Lett., 69, 1383(1992).

    [33] F. N.Beg, A. R.Bell, A. E.Dangor, C. N.Danson, A. P.Fews, M. E.Glinsky, B. A.Hammel, P.Lee, P. A.Norreys, M.Tatarakis. A study of picosecond laser-solid interactions up to 1019 W/cm2. Phys. Plasmas, 4, 447(1997).

    [34] F. N.Beg, M. G.Haines, R. B.Stephens, M. S.Wei. Hot-electron temperature and laser-light absorption in fast ignition. Phys. Rev. Lett., 102, 045008(2009).

    [35] J. R.Davies. Laser absorption by overdense plasmas in the relativistic regime. Plasma Phys. Controlled Fusion, 51, 014006(2009).

    [36] K. U.Akli, H.Azechi, F. N.Beg, C.Bellei, J. R.Davies, R. G.Evans, R. R.Freeman, J. S.Green, H.Habara, R.Heathcote, M. H.Key, J. A.King, K. L.Lancaster, N. C.Lopes, T.Ma, A. J.MacKinnon, K.Markey, A.McPhee, Z.Najmudin, P.Nilson, P. A.Norreys, R.Onofrei, V. M.Ovchinnikov, R.Stephens, K.Takeda, K. A.Tanaka, T.Tanimoto, W.Theobald, L.Van Woerkom, J.Waugh, N. C.Woolsey, M.Zepf. Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. Phys. Rev. Lett., 100, 015003(2008).

    [37] Y. T.Lee, R. M.More. An electron conductivity model for dense plasmas. Phys. Fluids, 27, 1273(1984).

    [38] R. M.More. Pressure ionization, resonances, and the continuity of bound and free states. Adv. At. Mol. Phys., 21, 305-356(1985).

    [39] F.Amiranoff, G.Bonnaud, L.Gremillet. Filamented transport of laser-generated relativistic electrons penetrating a solid target. Phys. Plasmas, 9, 941(2002).

    [40] A.Bret, C.Deutsch, M.-C.Firpo. Characterization of the initial filamentation of a relativistic electron beam passing through a plasma. Phys. Rev. Lett., 94, 115002(2005).

    X. H. Yang, Z. H. Chen, H. Xu, Y. Y. Ma, G. B. Zhang, D. B. Zou, F. Q. Shao. Hybrid PIC–fluid simulations for fast electron transport in a silicon target[J]. Matter and Radiation at Extremes, 2023, 8(3): 035901
    Download Citation