• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 5, 050006 (2024)
Yihuizi LIU1,2, Neng ZHANG2, Yueqiang LIU3, Xueyu GONG1,*..., Shuo WANG2, Chunyu LI2, Lian WANG2 and Guangzhou HAO2|Show fewer author(s)
Author Affiliations
  • 1School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 2Southwestern Institute of Physics, Chengdu 610041, China
  • 3General Atomics, San Diego, CA 92186-5608, United States of America
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.050006 Cite this Article
    Yihuizi LIU, Neng ZHANG, Yueqiang LIU, Xueyu GONG, Shuo WANG, Chunyu LI, Lian WANG, Guangzhou HAO. Influence of kinetic effects on plasma response to resonant magnetic perturbations in HL-2A tokamak[J]. NUCLEAR TECHNIQUES, 2024, 47(5): 050006 Copy Citation Text show less
    References

    [1] Liu Y Q, Kirk A, Sun Y et al. Toroidal modeling of plasma response and resonant magnetic perturbation field penetration[J]. Plasma Physics and Controlled Fusion, 54, 124013(2012).

    [2] Boozer A H. Error field amplification and rotation damping in tokamak plasmas[J]. Physical Review Letters, 86, 5059-5061(2001).

    [3] Lanctot M J, Reimerdes H, Garofalo A M et al. Validation of the linear ideal magnetohydrodynamic model of three-dimensional tokamak equilibria[J]. Physics of Plasmas, 17, 030701(2010).

    [4] Lanctot M J, Reimerdes H, Garofalo A M et al. Measurement and modeling of three-dimensional equilibria in DIII-D[J]. Physics of Plasmas, 18, 056121(2011).

    [5] Strait E J, Garofalo A M, Jackson G L et al. Resistive wall mode stabilization by slow plasma rotation in DIII-D tokamak discharges with balanced neutral beam injection[J]. Physics of Plasmas, 14, 056101(2007).

    [6] Garofalo A M, Turnbull A D, Austin M E et al. Direct observation of the resistive wall mode in a tokamak and its interaction with plasma rotation[J]. Physical Review Letters, 82, 3811-3814(1999).

    [7] Hender T C, Reimerdes H, Chu M S et al. Prediction of rotational stabilisation of resistive wall modes in ITER[C](2006).

    [8] Park J K, Boozer A H, Menard J E et al. Shielding of external magnetic perturbations by torque in rotating tokamak plasmas[J]. Physics of Plasmas, 16, 082512(2009).

    [9] Sabbagh S A, Ahn J W, Allain J et al. Overview of physics results from the conclusive operation of the National Spherical Torus Experiment[J]. Nuclear Fusion, 53, 104007(2013).

    [10] Liu Y Q, Kirk A, Gribov Y et al. Modelling of plasma response to resonant magnetic perturbation fields in MAST and ITER[J]. Nuclear Fusion, 51, 083002(2011).

    [11] Li L, Liu Y Q, Kirk A et al. Modelling plasma response to RMP fields in ASDEX Upgrade with varying edge safety factor and triangularity[J]. Nuclear Fusion, 56, 126007(2016).

    [12] Sun Y, Liang Y, Liu Y Q et al. Nonlinear transition from mitigation to suppression of the edge localized mode with resonant magnetic perturbations in the EAST tokamak[J]. Physical Review Letters, 117, 115001(2016).

    [13] Wan B N, Liang Y, Gong X Z et al. Recent advances in EAST physics experiments in support of steady-state operation for ITER and CFETR[J]. Nuclear Fusion, 59, 112003(2019).

    [14] Liu Y Q, Kirk A, Li L et al. Comparative investigation of ELM control based on toroidal modelling of plasma response to RMP fields[J]. Physics of Plasmas, 24, BI2(2017).

    [15] WANG Yanfei. Study on correlation between X-point displacement and the edge localized modes control via using 3-D magnetic perturbed field in tokamak[D](2022).

    [16] Liu Y Q, Ham C J, Kirk A et al. ELM control with RMP: plasma response models and the role of edge peeling response[J]. Plasma Physics and Controlled Fusion, 58, 114005(2016).

    [17] Rozhansky V, Kaveeva E, Molchanov P et al. Modification of the edge transport barrier by resonant magnetic perturbations[J]. Nuclear Fusion, 50, 034005(2010).

    [18] Liu Y Q, Connor J W, Cowley S C et al. Toroidal curvature induced screening of external fields by a resistive plasma response[J]. Physics of Plasmas, 19, 072509(2012).

    [19] Lanctot M J, Reimerdes H, Garofalo A M et al. Validation of the linear ideal magnetohydrodynamic model of three-dimensional tokamak equilibria[J]. Physics of Plasmas, 17, 030701(2010).

    [20] Liu Y Q, Chu M S, Chapman I T et al. Toroidal self-consistent modeling of drift kinetic effects on the resistive wall mode[J]. Physics of Plasmas, 15, 112503(2008).

    [21] Liu Y, Chapman I T, Chu M S et al. Progress in physics and control of the resistive wall mode in advanced tokamaks[J]. Physics of Plasmas, 16, 056113(2009).

    [22] Wang Z R, Lanctot M J, Liu Y Q et al. Three-dimensional drift kinetic response of high-β plasmas in the DIII-D tokamak[J]. Physical Review Letters, 114, 145005(2015).

    [23] Hu B, Betti R. Resistive wall mode in collisionless quasistationary plasmas[J]. Physical Review Letters, 93, 105002(2004).

    [24] Antonsen T M, Lee Y C. Electrostatic modification of variational principles for anisotropic plasmas[J]. The Physics of Fluids, 25, 132-142(1982).

    [25] Porcelli F, Stankiewicz R, Kerner W et al. Solution of the drift-kinetic equation for global plasma modes and finite particle orbit widths[J]. Physics of Plasmas, 1, 470-480(1994).

    [26] Menard J E, Wang Z, Liu Y et al. Rotation and kinetic modifications of the tokamak ideal-wall pressure limit[J]. Physical Review Letters, 113, 255002(2014).

    [27] Park J K, Boozer A H, Menard J E. Nonambipolar transport by trapped particles in tokamaks[J]. Physical Review Letters, 102, 065002(2009).

    [28] Wang Z R, Park J K, Menard J E et al. Drift kinetic effects on plasma response in high beta spherical tokamak experiments[J]. Nuclear Fusion, 58, 016015(2018).

    [29] Dong G Q, Liu Y Q, Liu Y et al. Non-linear interplay between edge localized infernal mode and plasma flow[J]. Nuclear Fusion, 59, 066011(2019).

    [30] Liu Y Q, Kirk A, Nardon E. Full toroidal plasma response to externally applied nonaxisymmetric magnetic fields[J]. Physics of Plasmas, 17, 122502(2010).

    [31] Hammett G W, Dorland W, Perkins F W. Fluid models of phase mixing, Landau damping, and nonlinear gyrokinetic dynamics[J]. Physics of Fluids B: Plasma Physics, 4, 2052-2061(1992).

    [32] Zhou L N, Liu Y Q, Hu H Q et al. Drift kinetic effects on plasma response to resonant magnetic perturbation for EU DEMO design[J]. Plasma Physics and Controlled Fusion, 65, 035008(2023).

    [33] Zhao Y F, Liu Y Q, Wang S et al. Neural network based fast prediction of β N limits in HL-2M[J]. Plasma Physics and Controlled Fusion, 64, 045010(2022).

    Yihuizi LIU, Neng ZHANG, Yueqiang LIU, Xueyu GONG, Shuo WANG, Chunyu LI, Lian WANG, Guangzhou HAO. Influence of kinetic effects on plasma response to resonant magnetic perturbations in HL-2A tokamak[J]. NUCLEAR TECHNIQUES, 2024, 47(5): 050006
    Download Citation