• Laser & Optoelectronics Progress
  • Vol. 62, Issue 3, 0328001 (2025)
Xiangnan Zhu1,*, Zongming Tao2,3, and Qi Hao1
Author Affiliations
  • 1Key Laboratory of Quantum Materials and Devices, Ministry of Education, School of Physics, Southeast University, Nanjing 211189, Jiangsu , China
  • 2Jianghuai Advanced Technology Center, Hefei 230031, Anhui , China
  • 3Department of Basic Sciences, PLA Army Academy of Artillery and Air Defense, Hefei 230031, Anhui , China
  • show less
    DOI: 10.3788/LOP240942 Cite this Article Set citation alerts
    Xiangnan Zhu, Zongming Tao, Qi Hao. Simulation of Detection and Recognition for Aircraft Wake Vortices in Upper Airspace[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0328001 Copy Citation Text show less

    Abstract

    Air pressure imbalance on the wingtips generates rotating airflows behind the aircraft, known as aircraft wake vortices, leading to variations in the frequency of reflected waves. The signal can be detected using Doppler lidar, but it is intrinsically weak in nature and requires new detection technologies. Hence, this paper studies the distribution and detection feasibility of aircraft wake vortices during the cruising phase. An Airbus A330 and two types of fighter jets are used as examples. The decay pattern and spatial distribution characteristics of wake vortices are also calculated. Furthermore, the wake vortex detection model discussed in this paper is based on lidar and presents the relationship between aircraft wake vortex characteristics and radar echo signals. Therefore, the identification and judgment of wake vortices are achievable. The findings of this paper provide a method and basis for the detection and identification of flight characteristics of aircraft during the cruising phase.
    ρCL2ARB2V2=ρVb0Γ0
    Γ0=mgρVb0,  b0=π4B
    Γr=2πrvr
    vr=Γ02πrr2r2+rc2
    vyy,z=-Γ1z-z12πr12+rc12+Γ2z-z22πr22+rc22vzy,z=+Γ1y-y12πr12+rc12-Γ2y-y22πr22+rc22,r1=y-y12+z-z12r2=y-y22+z-z22
    Γ5-15*t*=111r*=515A-exp-r*24v1*t*-T1*
    Γ5-15*t*=A-exp-R*2v1*t*-T1*
    Γ5-15*t*=A-exp-R*2v1*t*-T1*-exp-R*2v2*t*-T2*
    T2*=T2,0*exp-0.185T2,0*N*
    T2,0*=5,ε*0.0235T*-1,ε*>0.0235T*14exp-0.70T*=ε*,0.2535ε*>0.0235T*=0.804ε*34,ε*>0.2535
    v2,u*=0.0251-exp-N*-0.52v2,l*=0.0018+0.013N*
    v2*=v2,u*+v2,l*2
    ω=Γ5-152πb0,    Γ5-15=Γ5-15*Γ0
    VRP=VTPsinαP-φP=Γ2πrr2r2+rc2sinαP-φP
    VRPR,φ=Γ12πF1R,φ-Γ22πF2R,φ
    FlR,φ=rlφYR,φ+-1lb022+ZR,φ2+rc2
    rlφ=ROsinφ-φO--1lb02sinφ
    YR,φ=Rcosφ-ROcosφOZR,φ=Rsinφ-ROsinφO
    FlR,φ=rlφYR,φ+-1lb022+ZR,φ2
    VTP=VRPsinαP-φP=Γ12πF1R,φ-Γ22πF2R,φsinαP-φP
    Rl=Rlmax+Rlmin2, φl=φlmax+φlmin2
    V1φ=Γ12πr1-Γ2r22πr22+b02cos2φV2φ=Γ12πr12+b02cos2φ-Γ22πr2
    Γ1ik1r1φi+Γ2ik-r2φir22φi+b02cos2φi=2πV1φiΓ1ikr1φkr12φk+b02cos2φk+Γ2ik-1r2φk=2πV2φk
    Γ1=2πnmikV1φiμ2φk-V2φkη1φiμ1φiμ2φk-η1φiη2φkΓ2=2πnmikV2φkμ1φi-V1φiη2φkμ1φiμ2φk-η1φiη2φk
    μ1φi=1R1sinφi-φ1μ2φk=-1R2sinφk-φ2
    η1φi=-R2sinφi-φ2R2sinφi-φ22+R1cosφi-φ1-R2cosφi-φ22η2φk=R1sinφk-φ1R1sinφk-φ12+R1cosφk-φ1-R2cosφk-φ22
    G=n2i=0n2-1fi-fn-1-i
    E=-i=0n-1pilnpi,    pi=fii=0n-1fi
    L=i=n2n-1lnfi+3Yi-C
    Γ5-15*t*=1-exp-R*2v1*t*
    Γ5-15*t*=1-exp-R*2v1*t*-exp-R*2v2*t*-T2*