• Laser & Optoelectronics Progress
  • Vol. 62, Issue 3, 0328001 (2025)
Xiangnan Zhu1,*, Zongming Tao2,3, and Qi Hao1
Author Affiliations
  • 1Key Laboratory of Quantum Materials and Devices, Ministry of Education, School of Physics, Southeast University, Nanjing 211189, Jiangsu , China
  • 2Jianghuai Advanced Technology Center, Hefei 230031, Anhui , China
  • 3Department of Basic Sciences, PLA Army Academy of Artillery and Air Defense, Hefei 230031, Anhui , China
  • show less
    DOI: 10.3788/LOP240942 Cite this Article Set citation alerts
    Xiangnan Zhu, Zongming Tao, Qi Hao. Simulation of Detection and Recognition for Aircraft Wake Vortices in Upper Airspace[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0328001 Copy Citation Text show less
    References

    [1] Choroba P. Comprehensive study of the wake vortex phenomena to the assessment of its incorporation to ATM for safety and capacity improvements[D](2006).

    [2] Zhou B, Wang X S, Wang T. 2D visual simulation of aircraft wake vortices[J]. Journal of System Simulation, 20, 4281-4285(2008).

    [3] Xu X H, Zhao H S, Yang C S et al. Large eddy simulation of wake vortex during approach[J]. Journal of Nanjing University of Aeronautics & Astronautics, 42, 179-184(2010).

    [4] Hesse H, Palacios R. Dynamic load alleviation in wake vortex encounters[J]. Journal of Guidance, Control, and Dynamics, 39, 801-813(2016).

    [5] Holzäpfel F. Probabilistic two-phase wake vortex decay and transport model[J]. Journal of Aircraft, 40, 323-331(2003).

    [6] Vaughan J M, Harris M. Lidar measurement of B747 wakes: observation of a vortex within a vortex[J]. Aerospace Science and Technology, 5, 409-411(2001).

    [7] Xu S L, Hu Y H, Guo L R. Design and performance analysis of aircraft wake vortex coherent laser detection system[J]. Laser & Optoelectronics Progress, 51, 081202(2014).

    [8] Kang J H, Gao H Y, Liao S J et al. Simulation of spaceborne wind lidar based on Fizeau interferometer[J]. Chinese Journal of Lasers, 50, 2310002(2023).

    [9] Gu R P, Lu T, Wei Z Q. Aircraft wake inversion based on Bayesian network in lidar detection[J]. Laser & Optoelectronics Progress, 61, 0428006(2024).

    [10] Zhang T, Meng X Y, Gao W Q et al. Detectability of low characteristic aircraft based on different ground-based infrared visual range prediction models[J]. Acta Optica Sinica, 44, 0604001(2024).

    [11] Breitsamter C. Wake vortex characteristics of transport aircraft[J]. Progress in Aerospace Sciences, 47, 89-134(2011).

    [12] Lauer N, Yeo D W, Snyder D A et al. Tip-vortex localization for cross-stream position control of a multi-hole probe relative to a stationary wing in a free-jet wind tunnel[C], 1484(2017).

    [13] Köpp F, Rahm S, Smalikho I. Characterization of aircraft wake vortices by 2 μm pulsed Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 21, 194-206(2004).

    [14] Zhao L Y, Gu R P, Wei Z Q. Calculation of characteristic parameters of dynarnic wake vortex based on lidar echo[J]. Journal of Wuhan University of Science and Technology, 41, 388-394(2018).

    [15] Zhao L Y. Research and optimization of lidar detection method for characteristic parameters of aircraft wake vortex[D](2019).

    [16] Wei Z Q, Xu X H. Modeling and simulating of flow field for aircraft wake vortex[J]. Journal of Transportation Systems Engineering and Information Technology, 10, 186-191(2010).