• Semiconductor Optoelectronics
  • Vol. 45, Issue 1, 49 (2024)
WANG Quantian1, GONG Min1, and ZHANG Sijie1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2023102802 Cite this Article
    WANG Quantian, GONG Min, ZHANG Sijie. Optoelectronic Artificial Synapse with Ferroelectric Material for Logical Functions and Modulation of Visual Memory[J]. Semiconductor Optoelectronics, 2024, 45(1): 49 Copy Citation Text show less
    References

    [1] Wulf W A, McKee S A. Hitting the memory wall: Implications of the obvious[J]. ACM SIGARCH Computer Architecture News, 1995, (23): 20-24.

    [2] Yang J Q, Wang R P, Ren Y, et al. Neuromorphic engineering: From biological to spike-based hardware nervous systems[J]. Adv. Mater., 2020, 32: 2003610.

    [3] Li Z, Tang W, Zhang B, et al. Emerging memristive neurons for neuromorphic computing and sensing[J]. Science and Technol. of Adv. Mater., 2023, 24(1): 2188878.

    [4] Zhan C, Jiang Y Y, Yang M Y, et al. Synthesis and optoelectronic properties of a novel molecular semiconductor of dithieno5,6b:11,12bcoronene-2,3,8,9-tetracarboxylic tetraester[J]. Chinese Chemical Lett., 2014, 25: 65-68.

    [5] Xiao J, Liu S, Liu Y, et al. Synthesis, structure and physical properties of 5,7,14,16-tetraphenyl-8:9,12:13-bisbenzo-hexat-wistacene[J]. Chem.-An Asian J., 2012, 7: 561-564.

    [6] Huang H, Chen D, Li F, et al. BN-embedded eleven-ring fused heteroaromatics: Synthesis, optoelectronic properties and fluoride susceptibility[J]. Dyes and Pigments, 2020, 177: 108271.

    [7] Wang T Y, Meng J L, He Z Y, et al. Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments[J]. Nanoscale Horizons, 2019, 4: 1293-1301.

    [8] Qi H, Chang C, Zhang L. Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process[J]. Green Chemistry, 2009, 11: 177-184.

    [9] Kim S, Lee Y, Park M, et al. Dimensionality dependent plasticity in halide perovskite artificial synapses for neuromorphic computing[J]. Advanced Electronic Materials, 2019, 5: 1900008.

    [10] Lee Y, Oh J, Xu W, et al. Stretchable organic optoelectronic sensorimotor synapse[J]. Science Advances, 2018, 4: eaat7387.

    [11] Park H L, Kim H, Lim D, et al. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light[J]. Adv. Mater., 2020, 32: 1906899.

    [12] Seo S H, Jo S H, Kim S H, et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition[J]. Nature Communications, 2018, 9: 5106.

    [13] Park Y J, Bae J. Novel P(VDF-TrFE) polymer electrolytes: Their use in high-efficiency, all-solid-state electrochemical capacitors using ZnO nanowires[J]. J. Electrochem. Sci. Technol., 2018, 9: 126-132.

    [14] Das S, Appenzeller J. FeTRAM. An organic ferroelectric material based novel random access memory cell[J]. Nano Lett., 2011, 11(9): 4003-4007.

    [15] Mali S S, Dalavi D S, Bhosale P N, et al. Electro-optical properties of copper phthalocyanines (CuPc) vacuum deposited thin films[J]. RSC Adv., 2012, 2: 2100-2104.

    [16] MacDonald G A, Veneman P A, Placencia D, et al. Electrical property heterogeneity at transparent conductive oxide/organic semiconductor interfaces: mapping contact ohmicity using conducting-tip atomic force microscopy[J]. ACS Nano, 2012, 6: 9623-9636.

    [17] Xu J, Liu X, Hou W, et al. Effect of solvent-vapour annealing on morphology, structure of copper(Ⅱ) phthalocyanine thin films and device performance[J]. Bulletin of Materials Science, 2018, 41: 111.

    [18] Thirmal C, Mohan P N, Suresh G, et al. Improved dielectric and AC conductivity properties of P(VDF-TrFE)-Nafion blends for high-temperature flexible capacitor applications[J]. Current Appl. Phys., 2022, 44: 63-70.

    [19] Yu R, He L, Gao C, et al. Programmable ferroelectric bionic vision hardware with selective attention for high-precision image classification[J]. Nature Communications, 2022, 13: 7019.

    [20] Siebner H R, Funke K, Aberra A S, et al. Transcranial magnetic stimulation of the brain: What is stimulated?-A consensus and critical position paper[J]. Clinical Neurophysiology, 2022, 140: 59-97.

    [21] Furshpan E J, Potter D D. Transmission at the giant motor synapses of the crayfish[J]. The J. of Physiology, 1959, 145: 289-325.

    [22] Levine D N. Sherringtons "The Integrative action of the nervous system": A centennial appraisal[J]. J. of the Neurological Sciences, 2007, 253: 1-6.

    [23] Pereda A. Electrical synapses and their functional interactions with chemical synapses[J]. Nature Reviews Neuroscience, 2014, 15: 250-263.

    [24] Morris R G. Long-term potentiation and memory[J]. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2003, 358: 643-647.

    [25] Dai S, Zhao Y, Wang Y, et al. Recent advances in transistor-based artificial synapses[J]. Advanced Functional Materials, 2019, 29: 1903700.

    [26] Zhang Y, Huang Z, Jiang J E. Emerging photoelectric devices for neuromorphic vision applications: Principles, developments, and outlooks[J]. Science and Technol. of Advanced Materials, 2023, 24: 2186689.

    [27] Huang W, Hang P J, Wang Y, et al. Zero-power optoelectronic synaptic devices[J]. Nano Energy, 2020, 73: 104790.

    [28] Nath D, Dey P, Joseph A M, et al. CuPc/C60 heterojunction for high responsivity zero bias organic red light photodetector[J]. Appl. Phys. A, 2020, 126(8): 627.

    [29] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics, 1943, 5: 115-133.

    [30] Park H L, Lee Y, Kim N, et al. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics[J]. Adv. Mater., 2020, 32(15): 1903558.

    [31] Yang Y C, Yin M H, Yu Z Z, et al. Multifunctional nanoionic devices enabling simultaneous heterosynaptic plasticity and efficient in-memory Boolean logic[J]. Advanced Electronic Materials, 2017, 3(7): 1700032.

    [32] Yang Z H, Peng Y, Xu Y, et al. Bending strain induced photocurrent crossover from positive to negative in the flexible organic phototransistors[J]. Organic Electronics, 2020, 79: 105614.

    [33] Li X J, Wang Y P, Sun S, et al. Flexible and ultrasensitive piezoelectric composites based on highly (00l)-assembled BaTiO3 microplatelets for wearable electronics application[J]. Adv. Mater. Technol., 2019, 4: 1900689.

    [34] Song J, Wang X Y, Liao J H, et al. Horizontally-oriented growth of organic crystalline nanowires on polymer films for In-situ flexible photodetectors with Vis-NIR response and high bending stability[J]. Advanced Functional Materials, 2023, 33: 2213888.

    [35] Nath B, Ramamurthy P C, Mahapatra D, et al. Broadband flexible CuPc-PCBM photodetector with responsivity in different spectral regions[J]. IEEE J. on Flexible Electron., 2023, 2: 209-215.

    [36] Luo Y, Liu J, Zhang J, et al. A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection[J]. Beilstein J. of Nanotechnology, 2023, 14: 819-833.

    [37] Ping Y F, Xia W M, Zhou J H, et al. A (Ba0.94Ca0.06)(Ti0.95Zr0.05)O3 ceramic sheet doping to improve the inverse piezoelectric effect of the poly (vinylidene fluoride-trifluoroethylene)-based composite film[J]. Polymer Composites, 2023, 44(10): 6773-6782.

    [38] Liu L, Wang H, Wu Q, et al. Ferroelectric-gated ReS2 field-effect transistors for nonvolatile memory[J]. Nano Research, 2022, 15: 5443-5449.

    [39] Sun Y, He N, Wang Y, et al. Multilevel memory and artificial synaptic plasticity in P(VDF-TrFE)-based ferroelectric field effect transistors[J]. Nano Energy, 2022, 98: 107252.

    WANG Quantian, GONG Min, ZHANG Sijie. Optoelectronic Artificial Synapse with Ferroelectric Material for Logical Functions and Modulation of Visual Memory[J]. Semiconductor Optoelectronics, 2024, 45(1): 49
    Download Citation