[1] Li K, Wang Z Y, Xi R X et al. Summary on the development of L4 class self-driving vehicles[J]. Special Purpose Vehicle, 4-7(2023).
[2] Taheri H, Xia Z C. SLAM; definition and evolution[J]. Engineering Applications of Artificial Intelligence, 97, 104032(2021).
[3] Campos C, Elvira R, Rodríguez J J G et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 37, 1874-1890(2021).
[4] Wang B, Shen D F, Bai P F. Visual SLAM algorithm combining image brightness enhancement module and IMU information[J]. Laser & Optoelectronics Progress, 61, 2428013(2024).
[5] Liu Y, Jiao Y H, Ren C F. Visual SLAM method based on fuzzy image evaluation and feature matching improvement[J]. Laser & Optoelectronics Progress, 61, 2415006(2024).
[6] Li K R, Li L G, He Z H et al. Laser SLAM method for nearshore unmanned boat based on embankment feature extraction[J]. Laser & Optoelectronics Progress, 61, 1428003(2024).
[7] Wang F B, Cao K, Gong X et al. Lidar SLAM method for photovoltaic power stations based on factor graph optimization[J]. Laser & Optoelectronics Progress, 61, 1415002(2024).
[8] Hao Y, Zhang Y, Huang L et al. Mobile robot 2D laser simultaneous localization and mapping algorithm based on improved graph optimization[J]. Laser & Optoelectronics Progress, 62, 0215001(2025).
[9] Zhang T X, Cai L M, Ouyang C Y et al. Mapping research based on solid-state LiDAR fusion with 2D LiDAR[J]. Laser & Optoelectronics Progress, 61, 0828006(2024).
[10] Zhang J, Singh S. LOAM: lidar odometry and mapping in real-time[EB/OL]. https://www.roboticsproceedings.org/rss10/p07.pdf
[11] Shan T X, Englot B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C], 4758-4765(2018).
[12] Shan T X, Englot B, Meyers D et al. LIO-SAM: tightly-coupled lidar inertial odometry via smoothing and mapping[C], 5135-5142(2020).
[13] Wang H, Wang C, Xie L H. Intensity-SLAM: intensity assisted localization and mapping for large scale environment[J]. IEEE Robotics and Automation Letters, 6, 1715-1721(2021).
[14] Khan S, Wollherr D, Buss M. Modeling laser intensities for simultaneous localization and mapping[J]. IEEE Robotics and Automation Letters, 1, 692-699(2016).
[15] Park Y S, Jang H, Kim A. I-LOAM: intensity enhanced LiDAR odometry and mapping[C], 455-458(2020).
[16] Hewitt R A, Marshall J A. Towards intensity-augmented SLAM with LiDAR and ToF sensors[C], 1956-1961(2015).
[17] Zhou Z G, Di S F. Lidar SLAM based on intensity scan context loop closure detection[J]. Journal of Chinese Inertial Technology, 30, 738-745(2022).
[18] Kohlbrecher S, von Stryk O, Meyer J et al. A flexible and scalable SLAM system with full 3D motion estimation[C], 155-160(2011).
[19] Zhang X, Zhang H J, Qian C et al. A LiDAR-intensity SLAM and loop closure detection method using an intensity cylindrical-projection shape context descriptor[J]. International Journal of Applied Earth Observation and Geoinformation, 122, 103419(2023).
[20] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C], 3354-3361(2012).
[21] Kim G, Park Y S, Cho Y et al. MulRan: multimodal range dataset for urban place recognition[C], 6246-6253(2020).
[22] Kim G, Kim A. Scan context: egocentric spatial descriptor for place recognition within 3D point cloud map[C], 4802-4809(2018).
[23] Wang H, Wang C, Xie L H. Intensity scan context: coding intensity and geometry relations for loop closure detection[C], 2095-2101(2020).