• Photonics Research
  • Vol. 13, Issue 4, 995 (2025)
Yongxi Zeng1,2,3, Yanzhong Yu3, Jian Chen2, Houan Teng2..., Musheng Chen1,3, Pinghui Wu3 and Qiwen Zhan1,2,*|Show fewer author(s)
Author Affiliations
  • 1College of Physics and Information Engineering, Quanzhou Normal University, Quanzhou 362000, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 3Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou 362000, China
  • show less
    DOI: 10.1364/PRJ.550414 Cite this Article Set citation alerts
    Yongxi Zeng, Yanzhong Yu, Jian Chen, Houan Teng, Musheng Chen, Pinghui Wu, Qiwen Zhan, "Spin angular momentum engineering within highly localized focal fields: from simple orientation to complex topologies," Photonics Res. 13, 995 (2025) Copy Citation Text show less
    References

    [1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [2] A. Ashkin. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Sel. Top. Quantum Electron., 6, 841-856(2000).

    [3] A. Aiello, P. Banzer, M. Neugebauer. From transverse angular momentum to photonic wheels. Nat. Photonics, 9, 789-795(2015).

    [4] J. H. Poynting. The wave-motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly-polarized light. Proc. R. Soc. London A, 82, 560-567(1909).

    [5] L. Allen, M. W. Beijersbergen, R. J. Spreeuw. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [6] M. Uehara. On the helicity of an elliptically polarized electromagnetic wave. Am. J. Phys., 56, 942-943(1988).

    [7] D. Maluenda, R. Martínez-Herrero, I. Juvells. Synthesis of highly focused fields with circular polarization at any transverse plane. Opt. Express, 22, 6859-6867(2014).

    [8] G. Rui, J. Chen, X. Wang. Synthesis of focused beam with controllable arbitrary homogeneous polarization using engineered vectorial optical fields. Opt. Express, 24, 23667-23676(2016).

    [9] K. Y. Bliokh, F. Nori. Transverse spin of a surface polariton. Phys. Rev. A, 85, 061801(2012).

    [10] M. Neugebauer, T. Bauer, A. Aiello. Measuring the transverse spin density of light. Phys. Rev. Lett., 114, 063901(2015).

    [11] A. Y. Bekshaev, K. Y. Bliokh, F. Nori. Transverse spin and momentum in two-wave interference. Phys. Rev. X, 5, 011039(2015).

    [12] Y. Zhao, J. S. Edgar, G. D. M. Jeffries. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett., 99, 073901(2007).

    [13] J. Chen, C. Wan, L. Kong. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum. Opt. Express, 25, 8966-8974(2017).

    [14] S. Wang, J. Luo, Z. Zhu. All-optical generation of magnetization with arbitrary three-dimensional orientations. Opt. Lett., 43, 5551-5554(2018).

    [15] G. Rui, Y. Li, S. Zhou. Optically induced rotation of Rayleigh particles by arbitrary photonic spin. Photonics Res., 7, 69-79(2018).

    [16] T. H. R. Skyrme. A non-linear field theory. Proc. R. Soc. London A, 260, 127-138(1961).

    [17] T. H. R. Skyrme. A unified field theory of mesons and baryons. Nucl. Phys., 31, 556-569(1962).

    [18] S. L. Sondhi, A. Karlhede, S. A. Kivelson. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B, 47, 16419-16426(1993).

    [19] U. Al Khawaja, H. Stoof. Skyrmions in a ferromagnetic Bose-Einstein condensate. Nature, 411, 918-920(2001).

    [20] J. Fukuda, S. Žumer. Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal. Nat. Commun., 2, 246(2011).

    [21] S. Muhlbauer, B. Binz, F. Jonietz. Skyrmion lattice in a chiral magnet. Science, 323, 915-919(2009).

    [22] L. Han, C. Addiego, S. Prokhorenko. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature, 603, 63-67(2022).

    [23] D. Maccariello, W. Legrand, N. Reyren. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotechnol., 13, 233-237(2018).

    [24] N. Romming, C. Hanneken, M. Menzel. Writing and deleting single magnetic skyrmions. Science, 341, 636-639(2013).

    [25] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori. Spin–orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [26] Y. Fang, M. Han, P. Ge. Photoelectronic mapping of the spin–orbit interaction of intense light fields. Nat. Photonics, 15, 115-120(2020).

    [27] J. Chen, L. Yu, C. Wan. Spin-orbit coupling within tightly focused circularly polarized spatiotemporal vortex wavepacket. ACS Photonics, 9, 793-799(2022).

    [28] S. Tsesses, E. Ostrovsky, K. Cohen. Optical skyrmion lattice in evanescent electromagnetic fields. Science, 361, 993-996(2018).

    [29] L. Du, A. Yang, A. V. Zayats. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650-654(2019).

    [30] A. Karnieli, S. Tsesses, G. Bartal. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun., 12, 1092(2021).

    [31] X. Lei, A. Yang, P. Shi. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett., 127, 237403(2021).

    [32] H. Teng. Physical conversion and superposition of optical skyrmion. Photonics Res., 11, 2042-2053(2023).

    [33] Y. Shen, Y. Hou, N. Papasimakis. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun., 12, 5891(2021).

    [34] F. Cardano, L. Marrucci. Spin–orbit photonics. Nat. Photonics, 9, 776-778(2015).

    [35] Y. Shen, Q. Zhang, P. Shi. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics, 18, 15-25(2023).

    [36] C. A. Balanis. Antenna Theory: Analysis and Design(2005).

    [37] W. L. Stutzman, G. A. Thiele. Antenna Theory and Design(2013).

    [38] Y. Zeng, Y. Yu, X. Shen. Tightly focused optical skyrmions and merons formed by electric-field vectors with prescribed characteristics. Nanophotonics, 13, 251-261(2024).

    [39] J. Chen, C. Wan, L. Kong. Tightly focused optical field with controllable photonic spin orientation. Opt. Express, 25, 19517-19528(2017).

    [40] S. W. Hell, S. Lindek, E. H. K. Stelzer. Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy. J. Mod. Opt., 41, 675-681(1994).

    [41] S. Hell, E. H. K. Stelzer. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A, 9, 2159-2166(1992).

    [42] P. Debye. Das Verhalten von Lichtwellen in der Nähe eines Brennpunktes oder einer Brennlinie. Ann. Phys., 335, 755-776(1909).

    [43] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proc. R. Soc. London A, 253, 358-379(1959).

    [44] K. Y. Bliokh, F. Nori. Transverse and longitudinal angular momenta of light. Phys. Rep., 592, 1-38(2015).

    [45] M. Born, E. Wolf. Principles of Optics(1999).

    [46] W. Han, Y. Yang, W. Cheng. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express, 21, 20692-20706(2013).

    [47] Y. Shen, E. C. Martínez, C. Rosales-Guzmán. Generation of optical skyrmions with tunable topological textures. ACS Photonics, 9, 296-303(2022).

    [48] Y. Shen. Topological bimeronic beams. Opt. Lett., 46, 3737-3740(2021).

    [49] H. Jani, J.-C. Lin, J. Chen. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature, 590, 74-79(2021).

    [50] S. Wang, Z. Zhou, Z. Zheng. Topological structures of energy flow: Poynting vector skyrmions. Phys. Rev. Lett., 133, 073802(2024).

    Yongxi Zeng, Yanzhong Yu, Jian Chen, Houan Teng, Musheng Chen, Pinghui Wu, Qiwen Zhan, "Spin angular momentum engineering within highly localized focal fields: from simple orientation to complex topologies," Photonics Res. 13, 995 (2025)
    Download Citation