• Chinese Journal of Lasers
  • Vol. 52, Issue 8, 0802303 (2025)
Qi Yang1, Pengfei Guo1,*, Zhen Wang1, Changshuai Zhai1..., Jianfeng Geng1, Huijun Wang1, Jun Yu2 and Xin Lin2|Show fewer author(s)
Author Affiliations
  • 1Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, Shandong , China
  • 2State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072,Shaanxi , China
  • show less
    DOI: 10.3788/CJL241250 Cite this Article Set citation alerts
    Qi Yang, Pengfei Guo, Zhen Wang, Changshuai Zhai, Jianfeng Geng, Huijun Wang, Jun Yu, Xin Lin. Influence of Pulse Laser on Microstructure and Property of TiB2 /Inconel 718 Composite Fabricated by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2025, 52(8): 0802303 Copy Citation Text show less
    SEM images of mixed powder. (a) Low magnification image; (b) high magnification image
    Fig. 1. SEM images of mixed powder. (a) Low magnification image; (b) high magnification image
    Schematic diagrams of P-LPBF. (a) Schematic diagram of P-LPBF process; (b) waveform of pulsed laser
    Fig. 2. Schematic diagrams of P-LPBF. (a) Schematic diagram of P-LPBF process; (b) waveform of pulsed laser
    Density of P-LPBF formed TiB2/Inconel 718 composite versus laser volumetric energy density
    Fig. 3. Density of P-LPBF formed TiB2/Inconel 718 composite versus laser volumetric energy density
    Defect distributions in vertical section and horizontal section of P-LPBF formed TiB2/Inconel 718 composite under OM. (a)(e) ε=190.5 J/mm3; (b)(f) ε=165.1 J/mm3; (c)(g) ε=139.7 J/mm3; (d)(h) ε=114.3 J/mm3
    Fig. 4. Defect distributions in vertical section and horizontal section of P-LPBF formed TiB2/Inconel 718 composite under OM. (a)(e) ε=190.5 J/mm3; (b)(f) ε=165.1 J/mm3; (c)(g) ε=139.7 J/mm3; (d)(h) ε=114.3 J/mm3
    P-LPBF formed TiB2/Inconel 718 composite under laser volumetric energy density of 222.9 J/mm³. (a) Macroscopic grain morphology in vertical section; (b) macroscopic grain morphology in horizontal section; (c) microstructure in vertical section; (d) microstructure in horizontal section
    Fig. 5. P-LPBF formed TiB2/Inconel 718 composite under laser volumetric energy density of 222.9 J/mm³. (a) Macroscopic grain morphology in vertical section; (b) macroscopic grain morphology in horizontal section; (c) microstructure in vertical section; (d) microstructure in horizontal section
    Element segregation of P-LPBF formed TiB₂/Inconel 718 composite under laser volumetric energy density of 222.9 J/mm3.
    Fig. 6. Element segregation of P-LPBF formed TiB₂/Inconel 718 composite under laser volumetric energy density of 222.9 J/mm3.
    Comparison of macroscopic grain morphologies in vertical section of P-LPBF formed TiB2/Inconel 718 composite under different laser volumetric energy density values. (a) 266.7 J/mm3; (b) 241.3 J/mm3; (c) 222.9 J/mm3; (d) 201.6 J/mm3
    Fig. 7. Comparison of macroscopic grain morphologies in vertical section of P-LPBF formed TiB2/Inconel 718 composite under different laser volumetric energy density values. (a) 266.7 J/mm3; (b) 241.3 J/mm3; (c) 222.9 J/mm3; (d) 201.6 J/mm3
    Comparison of microscopic dendritic morphologies in vertical section of P-LPBF formed TiB2/Inconel 718 composite under different laser volumetric energy density values. (a) 266.7 J/mm3; (b) 241.3 J/mm3; (c) 222.9 J/mm3; (d) 201.6 J/mm3
    Fig. 8. Comparison of microscopic dendritic morphologies in vertical section of P-LPBF formed TiB2/Inconel 718 composite under different laser volumetric energy density values. (a) 266.7 J/mm3; (b) 241.3 J/mm3; (c) 222.9 J/mm3; (d) 201.6 J/mm3
    Comparison of TiB2 particle distributions in P-LPBF formed TiB2/Inconel 718 composite under different laser volumetric energy density values. (a) 266.7 J/mm3; (b) 241.3 J/mm3; (c) 222.9 J/mm3; (d) 201.6 J/mm3
    Fig. 9. Comparison of TiB2 particle distributions in P-LPBF formed TiB2/Inconel 718 composite under different laser volumetric energy density values. (a) 266.7 J/mm3; (b) 241.3 J/mm3; (c) 222.9 J/mm3; (d) 201.6 J/mm3
    Vickers hardness test results. (a) Hardness distributions; (b) hardness versus laser volumetric energy density
    Fig. 10. Vickers hardness test results. (a) Hardness distributions; (b) hardness versus laser volumetric energy density
    Primary dendritic spacing distributions of each sample under different laser volumetric energy density values. (a) 266.7 J/mm3; (b) 241.3 J/mm3; (c) 222.9 J/mm3; (d) 201.6 J/mm3
    Fig. 11. Primary dendritic spacing distributions of each sample under different laser volumetric energy density values. (a) 266.7 J/mm3; (b) 241.3 J/mm3; (c) 222.9 J/mm3; (d) 201.6 J/mm3
    Relationship between λ1 of P-LPBF formed TiB2/Inconel 718 composite and El
    Fig. 12. Relationship between λ1 of P-LPBF formed TiB2/Inconel 718 composite and El
    Distributions of flow fields inside molten pool[19]. (a) Continuous laser; (b) pulsed laser
    Fig. 13. Distributions of flow fields inside molten pool[19]. (a) Continuous laser; (b) pulsed laser

    Laser power

    P /W

    Point distance

    Pd /μm

    Exposure time

    Te /μs

    Hatch distance

    h /μm

    Layer thickness

    d /μm

    Laser volumetric energy density ε /(J/mm3
    200452107050266.7
    190241.3
    130352107050222.9
    190201.6
    Table 1. Experimental parameters of LPBF
    Qi Yang, Pengfei Guo, Zhen Wang, Changshuai Zhai, Jianfeng Geng, Huijun Wang, Jun Yu, Xin Lin. Influence of Pulse Laser on Microstructure and Property of TiB2 /Inconel 718 Composite Fabricated by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2025, 52(8): 0802303
    Download Citation