• Chinese Journal of Lasers
  • Vol. 52, Issue 8, 0802303 (2025)
Qi Yang1, Pengfei Guo1,*, Zhen Wang1, Changshuai Zhai1..., Jianfeng Geng1, Huijun Wang1, Jun Yu2 and Xin Lin2|Show fewer author(s)
Author Affiliations
  • 1Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, Shandong , China
  • 2State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072,Shaanxi , China
  • show less
    DOI: 10.3788/CJL241250 Cite this Article Set citation alerts
    Qi Yang, Pengfei Guo, Zhen Wang, Changshuai Zhai, Jianfeng Geng, Huijun Wang, Jun Yu, Xin Lin. Influence of Pulse Laser on Microstructure and Property of TiB2 /Inconel 718 Composite Fabricated by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2025, 52(8): 0802303 Copy Citation Text show less
    References

    [1] Cho D G, Yang S K, Yun J C et al. Effect of sintering profile on densification of nano-sized Ni/Al2O3 composite[J]. Composites Part B: Engineering, 45, 159-164(2013).

    [2] Rao X W, Gu D D, Xi L X. Forming mechanism and mechanical properties of carbon nanotube reinforced aluminum matrix composites by selective laser melting[J]. Journal of Mechanical Engineering, 55, 1-9(2019).

    [3] Cao G H, Sun T Y, Wang C H et al. Investigations of γ’, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting[J]. Materials Characterization, 136, 398-406(2018).

    [4] Popov V A, Burghammer M, Rosenthal M et al. In situ synthesis of TiC nano-reinforcements in aluminum matrix composites during mechanical alloying[J]. Composites Part B: Engineering, 145, 57-61(2018).

    [5] Guo C, Yu Z R, Hu X G et al. Y2O3 nanoparticles decorated IN738LC superalloy manufactured by laser powder bed fusion: cracking inhibition, microstructures and mechanical properties[J]. Composites Part B: Engineering, 230, 109555(2022).

    [6] Zhu G L, Wang R, Wang W et al. Research progress on particulate-reinforced nickel-based composites[J]. Journal of Materials Science and Engineering, 36, 496-503, 486(2018).

    [7] Xia M J, Gu D D, Ma C L et al. Microstructure evolution, mechanical response and underlying thermodynamic mechanism of multi-phase strengthening WC/Inconel 718 composites using selective laser melting[J]. Journal of Alloys and Compounds, 747, 684-695(2018).

    [8] Santos E C, Shiomi M, Osakada K et al. Rapid manufacturing of metal components by laser forming[J]. International Journal of Machine Tools and Manufacture, 46, 1459-1468(2006).

    [9] Gu D D, Zhang H M, Dai D H et al. Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance[J]. Composites Part B: Engineering, 163, 585-597(2019).

    [10] Yang S Z, Han Q Q, Yin Y Y et al. Effects of TiB2 content on the processability and mechanical performance of Hastelloy-X based composites fabricated by selective laser melting[J]. Optics & Laser Technology, 155, 108441(2022).

    [11] Rezaee Hajideh M, Farahani M. Direct laser metal deposition cladding of IN718 on DIN 1.2714 tool steel reinforced by the SiC nanoparticles[J]. Journal of Materials Research and Technology, 23, 2020-2030(2023).

    [12] Wang Y D, Li B R. Influence of superficial Y2O3 coatings on high-temperature oxidation of Ni[J]. Rare Metal Materials and Engineering, 44, 1331-1334(2015).

    [13] Basu B, Raju G B, Suri A K. Processing and properties of monolithic TiB2 based materials[J]. International Materials Reviews, 51, 352-374(2006).

    [14] Han Q Q, Gu Y C, Huang J et al. Selective laser melting of Hastelloy X nanocomposite: effects of TiC reinforcement on crack elimination and strength improvement[J]. Composites Part B: Engineering, 202, 108442(2020).

    [15] Li H, Zhang J X, Lu B H. Forming quality and mechanical properties of TiC-particle-reinforced Inconel 718 composites produced by laser powder bed fusion[J]. Chinese Journal of Lasers, 50, 0802307(2023).

    [16] Nguyen Q B, Zhu Z, Chua B W et al. Development of WC-Inconel composites using selective laser melting[J]. Archives of Civil and Mechanical Engineering, 18, 1410-1420(2018).

    [17] Li Y L, Liu Z W, Dong Z W et al. Microstructure and mechanical properties of TiB2 particle reinforced A356 composites[J]. Special Casting & Nonferrous Alloys, 44, 1326-1332(2024).

    [18] Bi G, Sun C N, Nai M L et al. Micro-structure and mechanical properties of nano-TiC reinforced Inconel 625 deposited using LAAM[J]. Physics Procedia, 41, 828-834(2013).

    [19] Zheng M, Wei L, Chen J et al. Surface morphology evolution during pulsed selective laser melting: numerical and experimental investigations[J]. Applied Surface Science, 496, 143649(2019).

    [20] Xiao H, Li Y Q, Xiao W J et al. Grain structure and texture control of additive manufactured nickel-based superalloy using quasi-continuous-wave laser directed energy deposition[J]. Additive Manufacturing, 69, 103520(2023).

    [21] Hua W J, Zhang J X. Defect and quality control of GH3536 super alloy fabricated via laser selective melting[J]. Laser & Optoelectronics Progress, 61, 0514008(2024).

    [22] Wang L, Guo K, Cong J Q et al. Effect of process parameters on defect in selective laser melting of 316L stainless steel[J]. Laser & Optoelectronics Progress, 60, 0514007(2023).

    [23] Wang L Z, Wang S, Wu J J. Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting[J]. Optics & Laser Technology, 96, 88-96(2017).

    [24] Chen F. Study on microstructures and mechanical properties of TiN/Inconel 718 composites fabricated by selective laser melting[D](2020).

    [25] Zhao M Q, Song J, Tang Q et al. Laser powder bed fusion of Inconel 718-based composites: effect of TiB2 content on microstructure and mechanical performance[J]. Optics & Laser Technology, 167, 109596(2023).

    [26] Song J F, Song Y N, Wang W W et al. Prediction and control on the surface roughness of metal powder using selective laser melting[J]. Chinese Journal of Lasers, 49, 0202008(2022).

    [27] Ma L, Kong X W, Liang J J et al. Influence of pulsed laser scanning patterns on microstructural evolution and mechanical properties of Inconel 718 in direct laser deposition[J]. Journal of Materials Research and Technology, 25, 1231-1244(2023).

    [28] Sohn H, Liu P P, Yoon H et al. Real-time porosity reduction during metal directed energy deposition using a pulse laser[J]. Journal of Materials Science & Technology, 116, 214-223(2022).

    [29] Li S M, Xiao H, Liu K Y et al. Melt-pool motion, temperature variation and dendritic morphology of Inconel 718 during pulsed- and continuous-wave laser additive manufacturing: a comparative study[J]. Materials & Design, 119, 351-360(2017).

    [30] Jin L, Shi S H, Wei C et al. Influence of substrate irradiation proportion on stability of laser coaxial wire-melting deposition[J]. Acta Optica Sinica, 43, 0414003(2023).

    [31] Shah K, Pinkerton A J, Salman A et al. Effects of melt pool variables and process parameters in laser direct metal deposition of aerospace alloys[J]. Materials and Manufacturing Processes, 25, 1372-1380(2010).

    Qi Yang, Pengfei Guo, Zhen Wang, Changshuai Zhai, Jianfeng Geng, Huijun Wang, Jun Yu, Xin Lin. Influence of Pulse Laser on Microstructure and Property of TiB2 /Inconel 718 Composite Fabricated by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2025, 52(8): 0802303
    Download Citation