• Matter and Radiation at Extremes
  • Vol. 9, Issue 3, 037202 (2024)
Yuchi Wu1, Shaoyi Wang1, Bin Zhu1, Yonghong Yan1..., Minghai Yu1, Gang Li1, Xiaohui Zhang1, Yue Yang1, Fang Tan1, Feng Lu1, Bi Bi1, Xiaoqin Mao2, Zhonghai Wang2, Zongqing Zhao1, Jingqin Su1, Weimin Zhou1 and Yuqiu Gu1,a)|Show fewer author(s)
Author Affiliations
  • 1National Key Laboratory of Plasma Physics, Laser Fusion Research Center, CAEP, Mianyang, Sichuan 621900, China
  • 2College of Physics, Sichuan University, Chengdu 610065, China
  • show less
    DOI: 10.1063/5.0179781 Cite this Article
    Yuchi Wu, Shaoyi Wang, Bin Zhu, Yonghong Yan, Minghai Yu, Gang Li, Xiaohui Zhang, Yue Yang, Fang Tan, Feng Lu, Bi Bi, Xiaoqin Mao, Zhonghai Wang, Zongqing Zhao, Jingqin Su, Weimin Zhou, Yuqiu Gu. Virtual source approach for maximizing resolution in high-penetration gamma-ray imaging[J]. Matter and Radiation at Extremes, 2024, 9(3): 037202 Copy Citation Text show less
    References

    [1] G. N.Hounsfield. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br. J. Radiol., 46, 1016-1022(1973).

    [2] S.Carmignato, L.De Chiffre, J.-P.Kruth, R.Schmitt, A.Weckenmann. Industrial applications of computed tomography. CIRP Ann., 63, 655-677(2014).

    [3] E.Maire, P. J.Withers. Quantitative X-ray tomography. Int. Mater. Rev., 59, 1-43(2014).

    [4] E. L.Ritman. Current status of developments and applications of micro-CT. Annu. Rev. Biomed. Eng., 13, 531-552(2011).

    [5] S.Ito, S.Kamata, T.Kanamori. Cross-sectional imaging of large and dense materials by high energy X-ray CT using linear accelerator. J. Nucl. Sci. Technol., 26, 826-832(1989).

    [6] K.Katsuyama, S. I.Matsumoto, T.Nagamine, S.Sato. High energy X-ray CT study on the central void formations and the fuel pin deformations of FBR fuel assemblies. Nucl. Instrum. Methods Phys. Res., Sect. B, 255, 365-372(2007).

    [7] G.Mourou, D.Strickland. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219-221(1985).

    [8] J.Bromage, T.Butcher, J.-C. F.Chanteloup, E. A.Chowdhury, C. N.Danson, A.Galvanauskas, L. A.Gizzi, C.Haefner, J.Hein, D. I.Hillier, N. W.Hopps, Y.Kato, E. A.Khazanov, R.Kodama, G.Korn, R. X.Li, Y. T.Li, J.Limpert, J. G.Ma, C. H.Nam, D.Neely, D.Papadopoulos, R. R.Penman, L. J.Qian, J. J.Rocca, A. A.Shaykin, C. W.Siders, C.Spindloe, S.Szatmári, R. M. G. M.Trines, J. Q.Zhu, P.Zhu, J. D.Zuegel. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng., 7, e54(2019).

    [9] J. M.Dawson, T.Tajima. Laser electron accelerator. Phys. Rev. Lett., 43, 267-270(1979).

    [10] V.Malka. Laser plasma accelerators. Phys. Plasmas, 19, 055501(2012).

    [11] S. M.Hooker. Developments in laser-driven plasma accelerators. Nat. Photonics, 7, 775-782(2013).

    [12] C.Benedetti, S. S.Bulanov, J.Daniels, E.Esarey, C. G. R.Geddes, A. J.Gonsalves, W. P.Leemans, H.-S.Mao, D. E.Mittelberger, K.Nakamura, C. B.Schroeder, C.Tóth, J.-L.Vay. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett., 113, 245002(2014).

    [13] T.Ebisuzaki, T.Tajima, X. Q.Yan. Wakefield acceleration. Rev. Mod. Plasma Phys., 4, 7(2020).

    [14] A.Beck, S.Corde, R.Fitour, G.Lambert, E.Lefebvre, V.Malka, A.Rousse, K.Ta Phuoc. Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys., 85, 1(2013).

    [15] F.Albert, A. G. R.Thomas. Applications of laser wakefield accelerator-based light sources. Plasma Phys. Controlled Fusion, 58, 103001(2016).

    [16] Y.Chen, M.Fang, K.Feng, K. N.Jiang, L. T.Ke, Y. X.Leng, R. X.Li, J. Q.Liu, J. S.Liu, R.Qi, Z. Y.Qin, C.Wang, H.Wang, W. T.Wang, F. X.Wu, Y.Xu, Z. Z.Xu, X. J.Yang, C. H.Yu, Z. J.Zhang. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature, 595, 516-520(2021).

    [17] F.Burgy, L. L.Dain, S.Darbon, J.Faure, Y.Glinec, T.Hosokai, E.Lefebvre, V.Malka, B.Mercier, J. P.Rousseau, J. J.Santos. High-resolution γ-ray radiography produced by a laser-plasma driven electron source. Phys. Rev. Lett., 94, 025003(2005).

    [18] A.Ben-Isma?l, S.Corde, J.Faure, J. K.Lim, O.Lundh, V.Malka, C.Rechatin. Compact and high-quality gamma-ray source applied to 10 μm-range resolution radiography. Appl. Phys. Lett., 98, 264101(2011).

    [19] L. F.Cao, K. G.Dong, W.Fan, Y. Q.Gu, W.Hong, G.Li, F.Lu, F.Tan, S. Y.Wang, Y. C.Wu, Y. H.Yan, J.Yang, Y.Yang, M. H.Yu, T. K.Zhang, Z. Q.Zhao, W. M.Zhou, B.Zhu. Micro-spot gamma-ray generation based on laser wakefield acceleration. J. Appl. Phys., 123, 243301(2018).

    [20] M.Chen, F.He, D. A.Jaroszynski, P.Mckenna, Z. M.Sheng, W. M.Wang, S. M.Weng, T. P.Yu, J.Zhang, X. L.Zhu. Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator. Sci. Adv., 6, eaaz7240(2020).

    [21] R. D.Edwards, T. J.Goldsack, M. A.Sinclairet?al.. Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography. Appl. Phys. Lett., 80, 2129(2002).

    [22] C.Aedy, M.Barbotin, S.Bazzoli, L.Biddle, J. L.Bourgade, D.Brebion, A.Compant La Fontaine, C.Courtois, D.Drew, R.Edwards, M.Fox, M.Gardner, J.Gazave, J. M.Lagrange, O.Landoas, L.Le Dain, E.Lefebvre, D.Mastrosimone, N.Pichoff, G.Pien, M.Ramsay, A.Simons, N.Sircombe, C.Stoeckl, K.Thorp. High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction. Phys. Plasmas, 18, 023101(2011).

    [23] K. G.Dong, Y. Q.Gu, Y. L.He, X. L.Wen, Y. C.Wu, B. H.Zhang, Z. Q.Zhao, B.Zhu. Laser wakefield electron acceleration for γ-ray radiography application. Chin. Opt. Lett, 10, 063501(2012).

    [24] C.Aedy, S.Bazzoli, J. L.Bourgade, A.Compant La Fontaine, C.Courtois, L. L.Dain, R.Edwards, J.Gazave, J. M.Lagrange, O.Landoas, D.Mastrosimone, N.Pichoff, G.Pien, C.Stoeckl. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography. Phys. Plasmas, 20, 083114(2013).

    [25] C. D.Armstrong, C. D.Baird, C. M.Brenner, N.Brierley, S.Cipiccia, O. J.Finlay, J.-N.Gruse, P.McKenna, C. D.Murphy, Z.Najmudin, D.Neely, D.Rusby, M. P.Selwood, M. J. V.Streeter, D. R.Symes, C.Thornton, C. I. D.Underwood. Development of control mechanisms for a laser wakefield accelerator-driven bremsstrahlung x-ray source for advanced radiographic imaging. Plasma Phys. Controlled Fusion, 62, 124002(2020).

    [26] B.Bi, L. F.Cao, K. G.Dong, W.Fan, Y. Q.Gu, G.Li, F.Lu, F.Tan, S. Y.Wang, Y. C.Wu, Y. H.Yan, J.Yang, Y.Yang, M. H.Yu, T. K.Zhang, X. H.Zhang, Z. Q.Zhao, W. M.Zhou, B.Zhu. Towards high-energy, high-resolution computed tomography via a laser driven micro-spot gamma-ray source. Sci. Rep., 8, 15888(2018).

    [27] L. F.Cao, K. G.Dong, W.Fan, Y. Q.Gu, G.Li, L.Li, F.Lu, F.Tan, Y. C.Wu, Y. H.Yan, Y.Yang, M. H.Yu, S. Y.Zhang, T. K.Zhang, X. H.Zhang, Z. Q.Zhao, W. M.Zhou, B.Zhu. Design and characterization of high energy micro-CT with a laser-based X-ray source. Results Phys., 14, 102382(2019).

    [28] Z.Bin, T.Fang, L.Feng, L.Gang, C.Jia, Y.Jing, D.Ke-Gong, Y.Ming-Hai, W.Shao-Yi, Z.Tian-Kui, Y.Yong-Hong, W.Yu-Chi, G.Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Phys. Sin., 66, 245201(2017).

    [29] IEC(International. Electrotechnical Commission): Evaluation and routine testing in medical imaging departments-61223-3-5 Part 3-5: Acceptance tests – Imaging performance of computed tomography X-ray eqiupment. IEC, 61223-2.

    [30] W. A.Kalender. Computed Tomography: Fundamentals, System Technology, Image Quality, Application(2011).

    [31]

    [32] S.Agostinelliet?al.. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A, 506, 250-303(2003).

    [33] J.Allisonet?al.. Recent developments in GEANT4. Nucl. Instrum. Methods Phys. Res., Sect. A, 835, 186-225(2016).

    [34] Z.Jie, C.Li-Ming, X.Miao-Hua, K.Nakajima, T.Tajima, Z.Wei, Y.Xiao-Hui, L.Yun-Quan, L.Yu-Tong, W.Zhao-Hua, W.Zhi-Yi. Experimental study on Kα X-ray emission from intense femtosecond laser-solid interactions. Acta Phys. Sin., 56, 353(2007).

    [35] L.Bi-Yong, S.Jiang-Jun, L.Jin, L.Jun. Edge method for measuring source spot-size and its principle. Chin. Phys., 16, 266(2007).

    [36] P.Marmier, E.Sheldon. Physics of Nuclei and Particles(1969).

    [37] B.Rossi. High-Energy Particles(1952).

    [38] M.Fang, Y. X.Leng, R. X.Li, W. T.Li, J. Q.Liu, J. S.Liu, R.Qi, Z. Y.Qin, C.Wang, W. T.Wang, F. X.Wu, Y.Xu, Z. Z.Xu, C. H.Yu, Z. J.Zhang. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control. Phys. Rev. Lett., 117, 124801(2016).

    [39] N. M.Delbos, T.Eichner, L.Hübner, S.Jalas, L.Jeppe, S. W.Jolly, M.Kirchen, V.Leroux, A. R.Maier, P.Messner, M.Schnepp, M.Trunk, P. A.Walker, C.Werle, P.Winkler. Decoding sources of energy variability in a laser-plasma accelerator. Phys. Rev. X, 10, 031039(2020).

    [40] V. Y.Bychenkov, V.Chvykov, F. J.Dollar, I. V.Glazyrin, G.Kalintchenko, A. V.Karpeev, K.Krushelnick, A.Maksimchuk, T.Matsuoka, C.McGuffey, W.Schumaker, A. G. R.Thomas, V.Yanovsky. Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett., 104, 025004(2010).

    [41] C.Joshi, W.Lu, K. A.Marsh, S. F.Martins, W. B.Mori, A.Pak. Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett., 104, 025003(2010).

    [42] H.Feng, T.Li, Z.Xu. A new analytical edge spread function fitting model for modulation transfer function measurement. Chin. Opt. Lett., 9, 031101(2011).

    [43] J. M.Mooney, A. P.Tzannes. Measurement of the modulation transfer function of infrared cameras. Opt. Eng., 34, 1808-1817(1995).

    Yuchi Wu, Shaoyi Wang, Bin Zhu, Yonghong Yan, Minghai Yu, Gang Li, Xiaohui Zhang, Yue Yang, Fang Tan, Feng Lu, Bi Bi, Xiaoqin Mao, Zhonghai Wang, Zongqing Zhao, Jingqin Su, Weimin Zhou, Yuqiu Gu. Virtual source approach for maximizing resolution in high-penetration gamma-ray imaging[J]. Matter and Radiation at Extremes, 2024, 9(3): 037202
    Download Citation