• Journal of Electronic Science and Technology
  • Vol. 22, Issue 3, 100261 (2024)
Shi-Yuan Zhou1, Hong-Yu Luo1,*, Ya-Zhou Wang2, and Yong Liu1,*
Author Affiliations
  • 1State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • 2DTU Electro, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
  • show less
    DOI: 10.1016/j.jnlest.2024.100261 Cite this Article
    Shi-Yuan Zhou, Hong-Yu Luo, Ya-Zhou Wang, Yong Liu. Numerical design of an efficient Ho3+-doped InF3 fiber laser at ~3.2 μm[J]. Journal of Electronic Science and Technology, 2024, 22(3): 100261 Copy Citation Text show less

    Abstract

    In this work, we theoretically unlock the potential of Ho3+-doped InF3 fiber for efficient ~3.2 μm laser generation (from the 5F4,5S25F5 transition), by employing a novel dual-wavelength pumping scheme at 1150 nm and 980 nm, for the first time. Under clad-coupled 1150 nm pumping of 5 W, ~3.2 μm power of 3.6 W has been predicted with the optical-to-optical efficiency of 14.4%. Further efficient power scaling, however, is blocked by the output saturation with 980 nm pumping. To alleviate this behavior, the cascaded 5I55I6 transition, targeting ~3.9 μm, has been activated simultaneously, therefore accelerating the population circulation between the laser upper level 5F4,5S2 and long-lived 5I6 level under 980 nm pumping. As a result, enhanced ~3.2 μm power of 4.68 W has been obtained with optical-to-optical efficiency of 15.6%. Meanwhile the ~3.9 μm laser, yielding power of 2.76 W with optical-to-optical efficiency of 9.2%, is theoretically achievable as well with a moderate heat load, of which the performance is even better than the prior experimentally and theoretically reported Ho3+-doped InF3 fiber lasers emitting at ~3.9 μm alone. This work demonstrates a versatile platform for laser generation at ~3.2 μm and ~3.9 μm, thus providing the new opportunities for many potential applications, e.g., polymer processing, infrared countermeasures, and free-space communications.
    $ \frac{{{\text{d}}{N_5}}}{{{\text{d}}t}} = - \tau _5^{ - 1}{N_5} + {R_{{\text{VGSA}}}} - {R_{{\text{CR}}2}} - {R_{{\text{S}}{{\text{E}}_1}}} $(1)

    View in Article

    $ \frac{{{\text{d}}{N_4}}}{{{\text{d}}t}} = - \tau _4^{ - 1}{N_4} + {\beta _{5{\mathrm{,}}4}}\tau _5^{ - 1}{N_5} + {R_{{\text{S}}{{\text{E}}_1}}} + {R_{{\text{ESA}}}} + {R_{{\text{ETU2}}}} $(2)

    View in Article

    $ \frac{{{\text{d}}{N_3}}}{{{\text{d}}t}} = - \tau _3^{ - 1}{N_3} + \sum\limits_{i = 4{\mathrm{,}}5}^{} {{\beta _{i{\mathrm{,}}3}}\tau _i^{ - 1}{N_i}} + {R_{{\text{CR2}}}} - {R_{{\text{CR1}}}} - {R_{{\text{S}}{{\text{E}}_2}}} $(3)

    View in Article

    $ \frac{{{\text{d}}{N_2}}}{{{\text{d}}t}} = - \tau _2^{ - 1}{N_2} + \sum\limits_{i = 3{\mathrm{,}}4{\mathrm{,}}5} {{\beta _{i{\mathrm{,}}2}}\tau _i^{ - 1}{N_i}} - {R_{{\text{VGSA}}}} - 2{R_{{\text{ETU}}2}} + {R_{{\text{ETU}}1}} + {R_{{\text{GSA}}}} + {R_{{\text{S}}{{\text{E}}_{\text{2}}}}} $(4)

    View in Article

    $ \frac{{{\text{d}}{N_1}}}{{{\text{d}}t}} = - \tau _1^{ - 1}{N_1} + \sum\limits_{i = 2{\mathrm{,}}3{\mathrm{,}}4{\mathrm{,}}5} {{\beta _{i{\mathrm{,}}1}}\tau _i^{ - 1}{N_i}} - 2{R_{{\text{ETU}}1}} + 2{R_{{\text{CR}}1}} + {R_{{\text{CR}}2}} - {R_{{\text{ESA}}}} $(5)

    View in Article

    $ {N_{{\text{Ho}}}} = \sum\limits_{i = 0{\mathrm{,}} 1{\mathrm{,}} 2{\mathrm{,}} 3{\mathrm{,}} 4{\mathrm{,}} 5} {{N_i}} $(6)

    View in Article

    $ {R_{{\text{ETU1}}}} = {W_{1{\mathrm{,}}1}}N_1^2 $(7)

    View in Article

    $ {R_{{\text{ETU2}}}} = {W_{2{\mathrm{,}}2}}N_2^2 $(8)

    View in Article

    $ {R_{{\text{CR}}1}} = {W_{3{\mathrm{,}}0}}{N_3}{N_0} $(9)

    View in Article

    $ {R_{{\text{CR2}}}} = {W_{5{\mathrm{,}}0}}{N_5}{N_0} $(10)

    View in Article

    $ {R_{{\text{GSA}}}} = \frac{{{\lambda _{{p_1}}}{\Gamma _{{p_1}}}}}{{hc{A_{{\text{core}}}}}}\left( {{\sigma _{{\text{ab}}{{\text{s}}_{{\text{02}}}}}}{N_0} - {\sigma _{{\text{em}}{{\text{i}}_{{\text{20}}}}}}{N_2}} \right)\left( {P_{{p_1}}^ + + P_{{p_1}}^ - } \right) $(11)

    View in Article

    $ {R_{{\text{VGSA}}}} = \frac{{{\lambda _{{p_2}}}{\Gamma _{{p_2}}}}}{{hc{A_{{\text{core}}}}}}\left( {{\sigma _{{\text{ab}}{{\text{s}}_{{\text{25}}}}}}{N_2} - {\sigma _{{\text{em}}{{\text{i}}_{{\text{52}}}}}}{N_5}} \right)\left( {P_{{p_2}}^ + + P_{{p_2}}^ - } \right) $(12)

    View in Article

    $ {R_{{\text{ESA}}}} = \frac{{{\lambda _{{p_2}}}{\Gamma _{{p_2}}}}}{{hc{A_{{\text{core}}}}}}\left( {{\sigma _{{\text{ab}}{{\text{s}}_{{\text{14}}}}}}{N_1} - {\sigma _{{\text{em}}{{\text{i}}_{{\text{41}}}}}}{N_4}} \right)\left( {P_{{p_2}}^ + + P_{{p_2}}^ - } \right) $(13)

    View in Article

    $ {R_{{\text{S}}{{\text{E}}_{\text{1}}}}} = \frac{{{\lambda _{{s_1}}}{\Gamma _{{s_1}}}}}{{hc{A_{{\text{core}}}}}}\left( {{\sigma _{{\text{em}}{{\text{i}}_{{\text{54}}}}}}{N_5} - {\sigma _{{\text{ab}}{{\text{s}}_{45}}}}{N_4}} \right)\left( {P_{{s_1}}^ + + P_{{s_1}}^ - } \right) $(14)

    View in Article

    $ {R_{{\text{S}}{{\text{E}}_2}}} = \frac{{{\lambda _{{s_2}}}{\Gamma _{{s_2}}}}}{{hc{A_{{\text{core}}}}}}\left( {{\sigma _{{\text{em}}{{\text{i}}_{32}}}}{N_3} - {\sigma _{{\text{ab}}{{\text{s}}_{{\text{23}}}}}}{N_2}} \right)\left( {P_{{s_2}}^ + + P_{{s_2}}^ - } \right) $(15)

    View in Article

    $ {\Gamma _{{s_1}}} \approx 1 - \exp \left( { - 2\frac{{r_{{\text{core}}}^2}}{{\omega _1^2}}} \right) $(16)

    View in Article

    $ {\Gamma _{{s_2}}} \approx 1 - \exp \left( { - 2\frac{{r_{{\text{core}}}^2}}{{\omega _2^2}}} \right) $(17)

    View in Article

    $ {\omega _1} = {r_{{\text{core}}}}(0.65 + 1.619V_1^{ - 1.5} + 2.879V_1^{ - 6}) $(18)

    View in Article

    $ {\omega _2} = {r_{{\text{core}}}}(0.65 + 1.619V_2^{ - 1.5} + 2.879V_2^{ - 6}) $(19)

    View in Article

    $ {V_1} = \frac{{2\pi {r_{{\text{core}}}}{\text{NA}}}}{{{\lambda _{{s_1}}}}} $(20)

    View in Article

    $ {V_2} = \frac{{2\pi {r_{{\text{core}}}}{\text{NA}}}}{{{\lambda _{{s_2}}}}} $(21)

    View in Article

    $ \frac{{{\text{d}}P_{{p_1}}^ \pm }}{{{\text{d}}z}} = - {\Gamma _{{p_1}}}\left( {{\sigma _{{\text{ab}}{{\text{s}}_{02}}}}{N_0} - {\sigma _{{\text{em}}{{\text{i}}_{{\text{20}}}}}}{N_2}} \right)P_{{p_1}}^ \pm - {\alpha _{{p_1}}}P_{{p_1}}^ \pm $(22)

    View in Article

    $ \frac{{{\text{d}}P_{{p_2}}^ \pm }}{{{\text{d}}z}} = - {\Gamma _{{p_2}}}\left( {{\sigma _{{\text{ab}}{{\text{s}}_{{\text{25}}}}}}{N_2} - {\sigma _{{\text{em}}{{\text{i}}_{{\text{52}}}}}}{N_5} + {\sigma _{{\text{ab}}{{\text{s}}_{{\text{14}}}}}}{N_1} - {\sigma _{{\text{em}}{{\text{i}}_{{\text{41}}}}}}{N_4}} \right)P_{{p_2}}^ \pm - {\alpha _{{p_2}}}P_{{p_2}}^ \pm $(23)

    View in Article

    $ \frac{{{\text{d}}P_{{s_1}}^ \pm }}{{{\text{d}}z}} = {\Gamma _{{s_1}}}\left( {{\sigma _{{\text{em}}{{\text{i}}_{{\text{54}}}}}}{N_5} - {\sigma _{{\text{ab}}{{\text{s}}_{45}}}}{N_4}} \right)P_{{s_1}}^ \pm - {\alpha _{{s_1}}}P_{{s_1}}^ \pm $(24)

    View in Article

    $ \frac{{{\text{d}}P_{{s_2}}^ \pm }}{{{\text{d}}z}} = {\Gamma _{{s_2}}}\left( {{\sigma _{{\text{em}}{{\text{i}}_{32}}}}{N_3} - {\sigma _{{\text{ab}}{{\text{s}}_{23}}}}{N_2}} \right)P_{{s_2}}^ \pm - {\alpha _{{s_2}}}P_{{s_2}}^ \pm $(25)

    View in Article

    $ P_{{p_1}}^ + (0) = {R_{{p_{11}}}}P_{{p_1}}^ - (0) + {P_1} $(26)

    View in Article

    $ P_{{p_1}}^ - (L) = {R_{{p_{12}}}}P_{{p_1}}^ + (L) $(27)

    View in Article

    $ P_{{p_2}}^ + (0) = {R_{{p_{21}}}}P_{{p_2}}^ - (0) + {P_2} $(28)

    View in Article

    $ P_{{p_2}}^ - (L) = {R_{{p_{22}}}}P_{{p_2}}^ + (L) $(29)

    View in Article

    $ P_{{s_1}}^ + (0) = {R_{{s_{11}}}}P_{{s_1}}^ - (0) $(30)

    View in Article

    $ P_{{s_1}}^ - (L) = {R_{{s_{12}}}}P_{{s_1}}^ + (L) $(31)

    View in Article

    $ P_{{s_2}}^ + (0) = {R_{{s_{21}}}}P_{{s_2}}^ - (0) $(32)

    View in Article

    $ P_{{s_2}}^ - (L) = {R_{{s_{22}}}}P_{{s_2}}^ + (L) $(33)

    View in Article

    $ Q=Acore (i=1j=i14NiWMPRi,jEi,j+i=1,2Wi,iNi2δEi,i+j=3,5Wj,0NjN0δEj,0) $(34)

    View in Article

    Shi-Yuan Zhou, Hong-Yu Luo, Ya-Zhou Wang, Yong Liu. Numerical design of an efficient Ho3+-doped InF3 fiber laser at ~3.2 μm[J]. Journal of Electronic Science and Technology, 2024, 22(3): 100261
    Download Citation