[1] Frayssinous C., Fortin V., Bérubé J.P., Fraser A., Vallée R.. Resonant polymer ablation using a compact 3.44 μm fiber laser. J. Mater. Process. Tech., 252, 813-820(2018).
[2] Majewski M.R., Bharathan G., Fuerbach A., Jackson S.D.. Long wavelength operation of a dysprosium fiber laser for polymer processing. Opt. Lett., 46, 600-603(2021).
[3] Bérubé J.P., Frayssinous C., Lapointe J., Duval S., Fortin V., Vallée R.. Direct inscription of on-surface waveguides in polymers using a mid-IR fiber laser. Opt. Express, 27, 31013-31022(2019).
[4] L.P. Pleau, V. Ftin, F. Maes, R. Vallée, M. Bernier, Tunable allfiber laser f remote sensing of methane near 3.4 μm, in: Proc. of Conf. on Lasers ElectroOptics Europe & European Quantum Electronics Conf., Munich, Germany, 2019, p. 1.
[5] Michaud L.C., Boilard T., Magnan-Saucier S. et al. Towards real-time active imaging of greenhouse gases using tunable mid-infrared all-fiber lasers. Appl. Optics, 62, G69-G76(2023).
[6] Woodward R.I., Majewski M.R., Hudson D.D., Jackson S.D.. Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing. APL Photonics, 4, 020801:1-10(2019).
[7] Y.N. Yusef, D.V. Petrachkov, E.N. Kobov, et al., An ex vivo study of the impact of infrared laser on ocular tissues, in: Proc. of 2022 Intl. Conf. Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2022, p. 1.
[8] Wang-Evers M., Blazon-Brown A.J., Ha-Wissel L. et al. Assessment of a 3050/3200 nm fiber laser system for ablative fractional laser treatments in dermatology. Laser Surg. Med., 54, 851-860(2022).
[9] Yue W.-J., Zhang Y.-C., Shi L.-B. et al. Porcine skin ablation using mid-infrared picosecond pulse burst. Results in Optics, 9, 100309:1-7(2022).
[10] Aydin Y.O., Fortin V., Vallée R., Bernier M.. Towards power scaling of 2.8 μm fiber lasers. Opt. Lett., 43, 4542-4545(2018).
[11] V. Ftin, M. Bernier, S.T. Bah, R. Vallée, 30 W fluide glass allfiber laser at 2.94 μm, Opt. Lett. 40 (12) (Jun. 2015) 2882–2885.
[12] Li J.-F., Hudson D.D., Jackson S.D.. Tuned cascade laser. IEEE Photonic Tech. L., 24, 1215-1217(2012).
[13] Jobin F., Paradis P., Aydin Y.O. et al. Recent developments in lanthanide-doped mid-infrared fluoride fiber lasers [Invited]. Opt. Express, 30, 8615-8640(2022).
[14] Henderson-Sapir O., Munch J., Ottaway D.J.. Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping. Opt. Lett., 39, 493-496(2014).
[15] Henderson-Sapir O., Jackson S.D., Ottaway D.J.. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser. Opt. Lett., 41, 1676-1679(2016).
[16] M. LemieuxTanguay, V. Ftin, T. Boilard, et al., 15 W monolithic fiber laser at 3.55 µm, Opt. Lett. 47 (2) (Jan. 2022) 289–292.
[17] Majewski M.R., Jackson S.D.. Highly efficient mid-infrared dysprosium fiber laser. Opt. Lett., 41, 2173-2176(2016).
[18] Majewski M.R., Jackson S.D.. Tunable dysprosium laser. Opt. Lett., 41, 4496-4498(2016).
[19] V. Ftin, F. Jobin, M. Larose, M. Bernier, R. Vallée, 10Wlevel monolithic dysprosiumdoped fiber laser at 3.24 μm, Opt. Lett. 44 (3) (Feb. 2019) 491–494.
[20] Wang Y.-Z., Luo H.-Y., Gong H.-T. et al. Watt-level and tunable operations of 3 μm-class dysprosium ZrF4 fiber laser pumped at 1.69 μm. IEEE Photonic Tech. L., 34, 737-740(2022).
[21] Carbonnier C., Többen H., Unrau U.B.. Room temperature CW fibre laser at 3.22 μm. Electron. Lett., 34, 893-894(1998).
[22] O. HendersonSapir, A. Malouf, N. Bawden, J. Munch, S.D. Jackson, D.J. Ottaway, Recent advances in 3.5 μm erbiumdoped infrared fiber lasers, IEEE J. Sel. Top. Quant. 23 (3) (MayJun. 2017) 0900509:1–9.
[23] Ososkov Y., Lee J., Fernandez T.T., Fuerbach A., Jackson S.D.. High-efficiency fluoroindate glass fiber laser. Opt. Lett., 48, 2664-2667(2023).
[24] Falconi M.C., Loconsole A.M., Annunziato A., Cozic S., Poulain S., Prudenzano F.. Design of a broadband erbium-doped fluoroindate fiber laser emitting up to 3.91 μm. J. Lightwave Technol., 41, 6065-6072(2023).
[25] Maes F., Fortin V., Poulain S. et al. Room-temperature fiber laser at 3.92 μm. Optica, 5, 761-764(2018).
[26] Majewski M.R., Woodward R.I., Carreé J.Y., Poulain S., Poulain M., Jackson S.D.. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber. Opt. Lett., 43, 1926-1929(2018).
[27] Li J.-F., Hudson D.D., Jackson S.D.. High-power diode-pumped fiber laser operating at 3 μm. Opt. Lett., 36, 3642-3644(2011).
[28] F. Röser, C. Jauregui, J. Limpert, A. Tünnermann, 94 W 980 nm high brightness Ybdoped fiber laser, Opt. Express 16 (22) (Oct. 2008) 17310–17318.
[29] Zhou F., Li J.-F., Luo H.-Y., Quellette F., Liu Y.. Numerical analysis of 3.92 μm dual-wavelength pumped heavily-holmium-doped fluoroindate fiber lasers. J. Lightwave Technol., 39, 633-645(2021).
[30] Luo H.-Y., Shi J.-C., Chen J.-S. et al. Towards high-power and -efficiency ~2.8 μm lasing: Lightly-erbium-doped ZrF fiber laser pumped at ~1.7 μm. J. Lightwave Technol., 42, 316-325(2024).
[31] D. Marcuse, Loss analysis of singlemode fiber splices, The Bell System Technical Journal 56 (5) (MayJun. 1977) 703–718.
[32] Gomes L., Fortin V., Bernier M. et al. The basic spectroscopic parameters of Ho3+-doped fluoroindate glass for emission at 3.9 μm. Opt. Mater., 60, 618-626(2016).
[33] Gomes L., Fortin V., Bernier M. et al. Excited state absorption and energy transfer in Ho3+-doped indium fluoride glass. Opt. Mater., 66, 519-526(2017).
[34] Piatkowski D., Wisniewski K., Rozanski M. et al. Excited state absorption spectroscopy of ZBLAN: Ho3+ glass—experiment and simulation. J. Phys.-Condens. Mat., 20, 155201:1-11(2008).
[35] McCumber D.E.. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev., 136, A954-A957(1964).
[36] Osiac E., Sokólska I., Kück S.. Upconversion-induced blue. green and red emission in Ho3+:BaY2F8, J. Alloy Compd., 323–324, 283-287(2001).
[37] Oliveira S.L., Bell M.J.V., Flórez A., Nunes L.A.O.. Spectroscopic investigation of 2.0 µm emission in Ho3+-doped fluoroindate glasses. J. Phys. D Appl. Phys., 39, 3230-3234(2006).
[38] Gomes L., Librantz A.F.H., Jagosich F.H., Alves W.A.L., Ranieri I.M., Baldochi S.L.. Energy transfer rates and population inversion of 4I11/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal. J. Appl. Phys., 106, 103508:1-9(2009).
[39] Cheng Z.-W., Zhang Z., Wang R.-C. et al. Numerical modeling of dual-wavelength pumped heavily-Ho3+-doped fluoroindate fiber lasers with efficient output at 3.92 μm. J. Lightwave Technol., 41, 7021-7028(2023).
[40] Cao J.-N., Wei C., Zhou H.-R. et al. Modeling and optimization of cascaded lasing in a holmium doped fluoride fiber laser with efficient output at 3.92 μm. Opt. Express, 30, 31623-31633(2022).
[41] M. Pollnan, S.D. Jackson, Erbium 3 μm fiber lasers, IEEE J. Sel. Top. Quant. 7 (1) (Jan.Feb. 2001) 30–40.
[42] F. Maes, C. Stihler, L.P. Pleau, et al., 3.42 μm lasing in heavilyerbiumdoped fluide fibers, Opt. Express 27 (3) (Feb. 2019) 2170–2183.
[43] F. Maes, V. Ftin, M. Bernier, R. Vallée, 5.6 W monolithic fiber laser at 3.55 μm, Opt. Lett. 42 (11) (Jun. 2017) 2054–2057.
[44] Maes F., Fortin V., Bernier M., Vallée R.. Quenching of 3.4 μm dual-wavelength pumped erbium doped fiber lasers. IEEE J. Quantum Elect., 53, 1600208:1-8(2017).
[45] H.H.P.T. Bekman, J.C. Van Den Heuvel, F.J.M. Van Putten, R. Schleijpen, Development of a infrared laser f study of infrared countermeasures techniques, in: Proc. of SPIE 5615, Technologies f Optical Countermeasures, London, UK, 2004, pp. 27–38.
[46] Kaushal H., Kaddoum G.. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tut., 19, 57-96(2017).