• High Power Laser and Particle Beams
  • Vol. 37, Issue 2, 021001 (2025)
Yingtong Shi1, Hang Xu1,*, Jinqiang Xu2, and Senlin Huang1
Author Affiliations
  • 1State Key Laboratory of Nuclear Physics and Technology & Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
  • 2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.11884/HPLPB202537.240261 Cite this Article
    Yingtong Shi, Hang Xu, Jinqiang Xu, Senlin Huang. Research progress on high-brightness electron source drive laser system[J]. High Power Laser and Particle Beams, 2025, 37(2): 021001 Copy Citation Text show less
    SuperKEKB Yb/Nd drive laser system[15]
    Fig. 1. SuperKEKB Yb/Nd drive laser system[15]
    FLASH drive laser system[28]
    Fig. 2. FLASH drive laser system[28]
    Structure of PULSE[26]
    Fig. 3. Structure of PULSE[26]
    Output characteristics of PULSE amplifier[26]
    Fig. 4. Output characteristics of PULSE amplifier[26]
    Schematic of the pulse picking in PULSE[26]
    Fig. 5. Schematic of the pulse picking in PULSE[26]
    Schematic of the rod fiber amplifier in Cornell ERL drive laser system[19]
    Fig. 6. Schematic of the rod fiber amplifier in Cornell ERL drive laser system[19]
    Output characteristics of the drive laser amplifier at Cornell ERL[19]
    Fig. 7. Output characteristics of the drive laser amplifier at Cornell ERL[19]
    Green laser output characteristics of Cornell ERL drive laser system[19]
    Fig. 8. Green laser output characteristics of Cornell ERL drive laser system[19]
    Slice emittance of optimized electron bunches for various profiles of photocathode pulses and beam current profiles[54]
    Fig. 9. Slice emittance of optimized electron bunches for various profiles of photocathode pulses and beam current profiles[54]
    UV pulse shaping optical scheme at FERMI[58]
    Fig. 10. UV pulse shaping optical scheme at FERMI[58]
    Temporal intensity distribution of the incident laser and the output laser of incoherent stacking[17]
    Fig. 11. Temporal intensity distribution of the incident laser and the output laser of incoherent stacking[17]
    Optical layout of the multiple birefringent crystal shaper used for PULSE[33]
    Fig. 12. Optical layout of the multiple birefringent crystal shaper used for PULSE[33]
    Results of both the measured and the calculated pulse profiles after the shaper[33]
    Fig. 13. Results of both the measured and the calculated pulse profiles after the shaper[33]
    Beam transport and transverse beam profiles along the beam line at SwissFEL[30]
    Fig. 14. Beam transport and transverse beam profiles along the beam line at SwissFEL[30]
    UV laser beam spatial distributions without and with the application of DOE[15]
    Fig. 15. UV laser beam spatial distributions without and with the application of DOE[15]
    Schematic diagram of 3D shaper of laser pulse intensity distribution based on zero-dispersion compressor and SLM[65]
    Fig. 16. Schematic diagram of 3D shaper of laser pulse intensity distribution based on zero-dispersion compressor and SLM[65]
    Distribution of a 0.5 nC electron beam generated by 3D-shaped lasers[54]
    Fig. 17. Distribution of a 0.5 nC electron beam generated by 3D-shaped lasers[54]
    Diffraction efficiency and reflection coefficient of the 3D CBG aperture[67]
    Fig. 18. Diffraction efficiency and reflection coefficient of the 3D CBG aperture[67]
    Injector building layout at EuXFEL[16]
    Fig. 19. Injector building layout at EuXFEL[16]
    Stability of PULSE multiple birefringent crystal shaper with respect to temporal and temperature variations[33]
    Fig. 20. Stability of PULSE multiple birefringent crystal shaper with respect to temporal and temperature variations[33]
    facilityamplifiercenter wavelength/nmpulse energy/mJrepetition rate/Hz
    SXFELTi:sapphire800.010.010/50
    HALFTi:sapphire800.013.01~100
    TTXTi:sapphire800.0200.010
    SAPSTi:sapphire800.013.01~100
    PAL-XFELTi:sapphire770.020.8120
    FERMITi:sapphire783.018.050
    SwissFELYb:CaF21 041.32.410
    SuperKEKBYb-doped fiber/Nd:YAG hybrid1 064.020.01~25
    Table 1. Output parameters of class Ⅰ amplifiers in typical facilities
    facilityamplifiercenter wavelength/nmpulse energy/μJrepetition rate/MHz
    FLASHYb-doped fiber/Yb:YAG hybrid10301801
    EuXFELNd:YVO41064500.5/1.13/2.25/4.5
    LCLS-IIYb-doped fiber1030500~0.929
    DC-SRF-IIYb-doped fiber1030201
    S3FELYb-doped fiber1030501
    SHINEYb-doped fiber10301501
    Table 2. Output parameters of class Ⅱ amplifiers in typical facilities
    facilityamplifiercenter wavelength/nmaverage power/Wrepetition rate/MHz
    Cornell-ERLYb-doped fiber1040167.01300
    PAPSYb-doped fiber1030116.381.25/100/1300
    KEK-ERLYb-doped fiber (solid-state oscillator)106450.01300
    DC-SRF-IIYb-doped fiber103099.381.25
    Table 3. Output parameters of class Ⅲ amplifiers in typical facilities
    facilityfrequency conversion methodcrystalcenter wavelength/nmpulse energyrepetition rate
    FLASHFHGLBO+BBO257.56.1 μJ/11.2 μJ1 MHz
    LCLS-IIFHGBBO257.5300 nJ0~0.929 MHz
    S3FELFHGBBO257.52 μJ1 MHz
    SHINEFHGLBO+BBO257.52 μJ1 MHz
    SwissFELFHGBBO260600 μJ10 Hz
    EuXFELFHGLBO+BBO2665 μJ4.5 MHz
    SuperKEKBFHGBBO2661 mJ25 Hz
    TTXTHGBBO266.71 mJ10 Hz
    SXFELTHGBBO266.71.2 mJ10 Hz/50 Hz
    HALFTHGBBO266.72 mJ1~100 Hz
    SAPSTHGBBO266.72 mJ1~100 Hz
    FERMITHGBBO2612.3 mJ50 Hz
    DC-SRF-IISHGLBO5152 μJ/170 nJ1 MHz/81.25 MHz
    Cornell-ERLSHGLBO52095 nJ1.3 GHz
    KEK-ERLSHGLBO5320.77 nJ1.3 GHz
    PAPSSHGLBO515492 nJ81.25 MHz
    Table 4. Output parameters of harmonic generation module in typical facilities
    Yingtong Shi, Hang Xu, Jinqiang Xu, Senlin Huang. Research progress on high-brightness electron source drive laser system[J]. High Power Laser and Particle Beams, 2025, 37(2): 021001
    Download Citation